Algebraic Fractions - Lesson 4

Dividing Algebraic Fractions

LI

• ÷ algebraic fractions.

<u>SC</u>

- ÷ numbers.
- Factorise quadratic expressions.

Express as a single fraction in simplest form :

$$b^4 \div \frac{3}{b}$$

$$=\frac{b^4}{1}$$
 $\times \frac{b}{3}$

$$= \frac{b^4 \times b^1}{1 \times 3}$$

$$= \frac{b^5}{3}$$

Express as a single fraction in simplest form:

$$\frac{12}{M^2} \div \frac{7}{6 M}$$

$$= \frac{12}{M^2} \times \frac{6 M}{7}$$

$$= \frac{72 \text{ M}}{7 \text{ M}^2}$$

$$= \frac{72}{7 \text{ M}}$$

Express as a single fraction in simplest form:

$$\frac{2x}{9y^3} \div \frac{x^2}{3y} \times \frac{y}{12x}$$

$$= \frac{2x}{9y^3} \times \frac{3y}{x^2} \times \frac{y}{12x}$$

$$= \frac{6xy^2}{108x^3y^3}$$

Express as a single fraction in simplest form:

$$\frac{x^2 - 36}{x^7} \div \frac{x + 6}{x^4}$$

$$=\frac{x^2-36}{x^7}$$
 $x \frac{x^4}{x+6}$

$$= \frac{(x-6)(x+6)}{x^7} \times \frac{x^4}{x+6}$$

$$= \frac{(x-6)(x+6)x^4}{(x+6)x^7}$$

$$= \frac{x - 6}{x^3}$$

Express each of the following as a single fraction in its simplest form.

a
$$3x^4 \div \frac{x^2}{5}$$

$$\mathbf{b} \qquad x^3 y \div \frac{3x^2}{y}$$

c
$$\frac{4x^3}{7} \div 2x^2$$

d
$$\frac{2xy^2}{3} \div 6x^2y$$
 e $\frac{2x^2}{3} \div \frac{5x^3}{6}$

$$e \frac{2x^2}{3} \div \frac{5x^3}{6}$$

$$f - \frac{2x^2y^3}{5} \div \frac{4x^3y^2}{5}$$

2 Express each of the following as a single fraction in its simplest form.

a
$$\frac{3}{5x} \div \frac{6}{x^2} \times \frac{5}{4x}$$

$$\mathbf{b} \quad \frac{yz^2}{4x} \times \frac{x^2}{y} \div \frac{(xz)^2}{2}$$

a
$$\frac{3}{5x} \div \frac{6}{x^2} \times \frac{5}{4x}$$
 b $\frac{yz^2}{4x} \times \frac{x^2}{y} \div \frac{(xz)^2}{2}$ **c** $\frac{3x-3}{x+2} \div \frac{x^2-1}{x^2+4x+4}$

$$\mathbf{d} \quad \frac{x^3 + 7x^2 + 12x}{y^2 - 9} \div \frac{x^2 + 4x}{y - 3} \quad \mathbf{e} \quad -\frac{b}{x^2 + bx} \div \frac{b}{x + b} \quad \mathbf{f} \quad \frac{3x + 3}{x^2 + 4x + 4} \div \frac{3x^2 + 6x + 3}{x^2 - 4}$$

$$e - \frac{b}{x^2 + bx} \div \frac{b}{x + b}$$

$$\frac{3x+3}{x^2+4x+4} \div \frac{3x^2+6x+3}{x^2-4}$$

3 Express each of the following as a single fraction in its simplest form

a
$$1 \div \frac{x}{y}$$

$$\mathbf{b} \quad \frac{1}{\frac{x}{x+1}}$$

c
$$\frac{1}{\frac{1}{x-2}}$$

d
$$\frac{\frac{a}{b}}{\frac{c}{d}}$$

Answers

 $15x^{2}$ 1 a

b $\frac{xy^2}{3}$ c $\frac{2x}{7}$ d $\frac{y}{9x}$ e $\frac{4}{5x}$

2 a

b $\frac{1}{2x}$

c $\frac{3(x+2)}{(x+1)}$

d $\frac{x+3}{y+3}$

 $e - \frac{1}{x}$

 $\mathbf{f} \qquad \frac{x-2}{(x+1)(x+2)}$

3 a

b $\frac{x+1}{x}$

c x - 2

d $\frac{ad}{bc}$