Solving Quadratic Equations - Lesson 6

The Discriminant

LI

- Use the Discriminant to determine the number and nature of the roots.

SC

- Substitution.
- Solving simple equations.

The Discriminant is a quantity that allows us to decide how many roots a quadratic has (and their nature)

Nature of Roots:

- Real
- Not real

For the quadratic equation $a x^{2}+b x+c=0$, the Discriminant is the quantity :

$$
D=b^{2}-4 a c
$$

$$
\begin{aligned}
& \text { If } D=b^{2}-4 a c \text { is: } \\
& \text { - }>0-2 \text { distinct, real roots } \\
& \text { - }=0-1 \text { (repeated) real root/equal roots } \\
& \text { - }<0-\text { no real roots }
\end{aligned}
$$

Consider the graph $y=a x^{2}+b x+c, a>0$:

Example 1

Find the number and nature of the roots of $3 x^{2}-12 x+9=0$.

$$
\begin{aligned}
& \begin{array}{l}
a=3 \\
b=-12 \\
c=9
\end{array} \\
& D=b^{2}-4 a c \\
& D=(-12)^{2}-4(3)(9) \\
& D=144-108 \\
& D=36
\end{aligned}
$$

$$
\text { As } D>0 \text {, there exist } 2 \text { distinct real roots }
$$

Example 2

Show that the equation $-5 x^{2}+x-2=0$ has no real roots.

$$
\begin{aligned}
& \begin{array}{l}
a=-5 \\
b=1 \\
c=-2
\end{array} \\
& D=b^{2}-4 a c \\
& D=(1)^{2}-4(-5)(-2) \\
& D=1-40 \\
& D=-39
\end{aligned}
$$

As $D<0$, there are no real roots

Example 3

Find p so that the equation $-2 x^{2}-6 x+p=0$ has equal roots.

$$
\begin{aligned}
& \begin{array}{l}
a=-2 \\
b=-6 \\
c=p
\end{array} \\
& D=b^{2}-4 a c \\
& D=(-6)^{2}-4(-2)(p) \\
& D=36+8 p
\end{aligned}
$$

For equal roots, $D=0$:

$$
\begin{aligned}
36+8 p & =0 \\
8 p & =-36 \\
p & =-36 / 8 \\
p & =-9 / 2
\end{aligned}
$$

Example 4

Find k so that the equation $3 x^{2}+6 x+k=0$ has real roots.

$a=3$
$b=6$
$c=k$

$D=b^{2}-4 a c$
$D=6^{2}-4(3)(k)$

$$
D=36-12 k
$$

For real roots, $\mathrm{D} \geq 0$:

$$
\begin{aligned}
36-12 k & \geq 0 \\
-12 k & \geq-36 \\
k & \leq 3
\end{aligned}
$$

Questions

1 By calculating the value of the discriminant, determine the nature of the roots of the following quadratic equations.
a $x^{2}+6 x+9=0$
b $\quad 3 x^{2}-4 x+2=0$
c $x^{2}+5 x-1=0$
d $5 x^{2}+4 x+9=0$
e $4-2 x-x^{2}=0$
f $9 x^{2}-6 x+1=0$

2 How many points of contact do graphs of the following quadratic functions have with the x-axis?
a $y=3 x^{2}+4 x$
b $y=x^{2}+\frac{1}{2} x+\frac{1}{4}$
c $y=2 x^{2}-9$
d $y=x^{2}+4 x+6$
e $y=3 x-x^{2}$
f $y=5 x^{2}-4 x-3$

3 By first rearranging each quadratic equation to its standard form, determine the nature of the roots of the following.
a $\quad x(x+3)=2 x-3$
b $(x-2)^{2}-3=0$
c $\quad 4(2 x-4)=x^{2}$
d $(2 x-1)^{2}-3(x+1)=0$
e $x(4 x+3)+6=5-x$
f $(x+3)^{2}-4 x-8=0$

4 Show that the equation $x^{2}+3 x+5=0$ has no real roots.
5 Show that the equation $x(x-2)=7+2 x$ has real roots.
6 Find the range of values of k for which the equation $2 x^{2}+4 x+k=0$ has real roots.

7 Find the range of values of p for which the equation $p x^{2}-2 x+1=0$ has no real roots.

8 Find the values of k for which $k x^{2}-10 x+k=0$ has equal roots.
9 Show that the graphs $y=x^{2}-3 x+2$ and $y=2 x-9$ do not intersect.
10 For what values of k do the following equations have equal roots?
a $\quad x^{2}+(k-5) x+4 k=0$
b $\quad x^{2}=k(2 x-5)$

Answers

1 a $a=1, b=6, c=9$ $b^{2}-4 a c=0:$ equal roots b $\quad a=3, b=-4, c=2$ $b^{2}-4 a c=-8:$ no real roots c $\quad a=1, b=5, c=-1$ $b^{2}-4 a c=29:$ two real roots d $\quad a=5, b=4, c=9$ $b^{2}-4 a c=-164:$ no real roots e $\quad a=-1, b=-2, c=4$ $b^{2}-4 a c=20$: two real roots f $\quad a=9, b=-6, c=1$ $b^{2}-4 a c=0:$ equal roots	2 a $a=3, b=4, c=0$ $b^{2}-4 a c=16:$ two points of contact b $\quad a=1, b=\frac{1}{2}, c=\frac{1}{4}$ $b^{2}-4 a c=-\frac{3}{4}:$ no points of contact c $\quad a=2, b=0, c=-9$ $b^{2}-4 a c=72$: two points of contact d $\quad a=1, b=4, c=6$ $b^{2}-4 a c=-8:$ no points of contact e $\quad a=-1, b=3, c=0$ $b^{2}-4 a c=9:$ two points of contact f $\quad a=5, b=-4, c=-3$ $b^{2}-4 a c=76$: two points of contact
3 a $a=1, b=1, c=3$ $b^{2}-4 a c=-11$: no real roots b $\quad a=1, b=-4, c=1$ $b^{2}-4 a c=12$: two real roots c $\quad a=1, b=-8, c=16$ $b^{2}-4 a c=0$: two equal roots d $a=4, b=-7, c=-2$ $b^{2}-4 a c=81:$ two real roots e $\quad a=4, b=4, c=1$ $b^{2}-4 a c=0$: two equal roots f $\quad a=1, b=2, c=1$ $b^{2}-4 a c=0$: two equal roots	$\begin{array}{ll} 4 & a=1, b=3, c=5 \\ & b^{2}-4 a c=-11: \text { no real roots } \\ 5 & a=1, b=-4, c=-7 \\ & b^{2}-4 a c=44: \text { two real roots } \\ \mathbf{6} & k \leq 2 \\ 7 & \mathrm{p}>1 \\ 8 & k= \pm 5 \end{array}$

