Finding the Symmetry Axis Equation and Maximum or Minimum Turning Point Coordinates Using Completing the Square

LI

- Find the symmetry axis equation and TP of any quadratic function.

SC

- Completing the Square.

Any quadratic expression $a x^{2}+b x+c$ can be written in the form $p(x+q)^{2}+r$. This is called Completing the Square.

Completing the square is used to find (for a parabola) the :

- Equation of the symmetry axis : $x=-q$.
- Maximum (or minimum) turning point coordinates : $(-q, r)$.

$$
\begin{aligned}
& \text { If } p>0, \text { then Min. TP. } \\
& \text { If } p<0 \text {, then Max. TP. }
\end{aligned}
$$

Example 1

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^{2}+6 x+13$.

$$
\begin{aligned}
& \text { half the } x \text {-coefficient } x^{2}+6 x+13 \\
& =(x+3)^{2}-9+13 \\
& =\underline{\begin{array}{c}
\text { square and subtract it to } \\
\text { keep expression the } \\
\text { same }
\end{array}} \begin{array}{l}
\text { (always subtract here) }
\end{array} \\
& =(x+3)^{2}+4
\end{aligned}
$$

Symmetry axis equation : $x=-3 ; T P:(-3,4)$

Example 2

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^{2}-8 x+1$.

$$
\begin{aligned}
& x^{2}-8 x+1 \\
= & (x-4)^{2}-16+1 \\
= & (x-4)^{2}-15
\end{aligned}
$$

Symmetry axis equation : $x=4 ; T P:(4,-15)$

Example 3

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^{2}+3 x+5$.

$$
x^{2}+3 x+5
$$

half the x-coefficient

$$
=(x+3 / 2)^{2}-9 / 4+5
$$

square and subtract it to keep expression the same
(always subtract here)

$$
=(x+3 / 2)^{2}-9 / 4+20 / 4
$$

$$
=(x+3 / 2)^{2}+11 / 4
$$

Symmetry axis equation : $x=-3 / 2$; TP : $(-3 / 2,11 / 4)$

Example 4

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^{2}-7 x-2$.

$$
\begin{aligned}
& x^{2}-7 x-2 \\
= & (x-7 / 2)^{2}-49 / 4-2 \\
= & (x-7 / 2)^{2}-49 / 4-8 / 4 \\
= & (x-7 / 2)^{2}-57 / 4
\end{aligned}
$$

Symmetry axis equation: $x=7 / 2$; TP : $(7 / 2,-57 / 4)$

Questions

Find the symmetry axis equation and the TP coordinates of :

| 1) $u^{2}-8 u+18$ | 11) $c^{2}-3 c+17$ |
| :--- | :--- | :--- |
| 2) $g^{2}+10 g+24$ | 12) $z^{2}+5 z+34$ |
| 3) $z^{2}-4 z-1$ | 13) $i^{2}+9 i+32$ |
| 4) $\mathrm{p}^{2}-6 p+14$ | 14) $s^{2}-7 s+19$ |
| 5) $e^{2}-12 e+8$ | 15) $\mathrm{k}^{2}+11 k+122$ |
| 6) $a^{2}-6 a-1$ | 16) $x^{2}+3 x-55$ |
| 7) $u^{2}+6 u+20$ | 17) $f^{2}-13 f+65$ |
| 8) $h^{2}-10 h-4$ | 18) $b^{2}+7 b+77$ |
| 9) $\mathrm{i}^{2}+12 i-7$ | 19) $\mathrm{k}^{2}-15 \mathrm{k}+87$ |
| 10) $\mathrm{s}^{2}-8 \mathrm{~s}+4$ | 20) $\mathrm{a}^{2}+21 a-4$ |

Answers

> 1) $u=4 ;(4,2)$
> 11) $c=3 / 2 ;(3 / 2,59 / 4)$
> 2) $g=-5 ;(-5,-1)$
> 12) $z=-5 / 2 ;(-5 / 2,111 / 4)$
> 3) $z=2 ;(2,-5)$
> 13) $i=-9 / 2 ;(-9 / 2,47 / 4)$
> 4) $p=3 ;(3,5)$
> 14) $s=7 / 2 ;(7 / 2,27 / 4)$
> 5) $e=6 ;(6,-28)$
> 6) $a=3 ;(3,-10)$
> 7) $u=-3 ;(-3,11)$
> 8) $h=5 ;(5,-29)$
> 9) $i=-6 ;(-6,-43)$
> 10) $s=4 ;(4,-12)$
> 15) $k=-11 / 2 ;(-11 / 2,367 / 4)$
> 16) $x=-3 / 2 ;(-3 / 2,-229 / 4)$
> 17) $f=13 / 2 ;(13 / 2,91 / 4)$
> 18) $b=-7 / 2 ;(-7 / 2,259 / 4)$
> 19) $k=15 / 2 ;(15 / 2,123 / 4)$
> 20) $a=-21 / 2(-21 / 2,-457 / 4)$

