Symmetry Axis and Turning Point - Lesson 1

Finding the Symmetry Axis Equation and Maximum or Minimum Turning Point Coordinates Using Completing the Square

LI

• Find the symmetry axis equation and TP of any quadratic function.

SC

• Completing the Square.

Any quadratic expression $a \times^2 + b \times + c$ can be written in the form $p (x + q)^2 + r$. This is called Completing the Square.

Completing the square is used to find (for a parabola) the :

- Equation of the symmetry axis : x = -q.
- Maximum (or minimum) turning point coordinates: (- q, r).

If p > 0, then Min. TP.

If p < 0, then Max. TP.

Example 1

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^2 + 6x + 13$.

$$x^{2} + 6x + 13$$
half the x-coefficient
$$= (x + 3)^{2} - 9 + 13$$

$$= ($$

$$= (x + 3)^2 + 4$$

Symmetry axis equation : x = -3; TP : (-3, 4)

Symmetry Axis Equation and Max. and Min. TPs using Completing the Squateenetebook 5, 2017

Example 2

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^2 - 8x + 1$.

$$x^{2} - 8x + 1$$

$$= (x - 4)^{2} - 16 + 1$$

$$= (x - 4)^{2} - 15$$

Symmetry axis equation : x = 4; TP : (4, -15)

Example 3

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^2 + 3x + 5$.

$$x^{2} + 3x + 5$$
half the x-coefficient
$$= (x + 3/2)^{2} - 9/4 + 5$$

square and subtract it to keep expression the same

(always subtract here)

$$= (x + 3/2)^{2} - 9/4 + 20/4$$

$$= (x + 3/2)^{2} + 11/4$$

Symmetry axis equation: x = -3/2; TP: (-3/2, 11/4)

Example 4

Find the equation of the symmetry axis and the coordinates of the turning point for the quadratic $x^2 - 7x - 2$.

$$x^{2} - 7x - 2$$

$$= (x - 7/2)^{2} - 49/4 - 2$$

$$= (x - 7/2)^{2} - 49/4 - 8/4$$

$$= (x - 7/2)^{2} - 57/4$$

Symmetry axis equation : x = 7/2; TP: (7/2, -57/4)

Questions

Find the symmetry axis equation and the TP coordinates of:

1)
$$u^2 - 8u + 18$$

2)
$$g^2 + 10g + 24$$
 12) $z^2 + 5z + 34$
3) $z^2 - 4z - 1$ 13) $i^2 + 9i + 32$

3)
$$z^2 - 4z - 1$$

4)
$$p^2 - 6p + 14$$
 14) $s^2 - 7s + 19$

$$5) e^2 - 12e + 8$$

7)
$$u^2 + 6u + 20$$
 17) $f^2 - 13f + 65$

8)
$$h^2 - 10h - 4$$

9)
$$i^2 + 12i - 7$$

10)
$$s^2 - 8s + 4$$

1)
$$u^2 - 8u + 18$$
 | 11) $c^2 - 3c + 17$

12)
$$z^2 + 5z + 34$$

14)
$$s^2 - 7s + 19$$

5)
$$e^2 - 12e + 8$$

6) $a^2 - 6a - 1$
15) $k^2 + 11k + 122$
16) $x^2 + 3x - 55$

$$16) x^2 + 3x - 55$$

17)
$$f^2 - 13 f + 65$$

18)
$$b^2 + 7b + 77$$

8)
$$h^2 - 10 h - 4$$

9) $i^2 + 12 i - 7$
10) $s^2 - 8 s + 4$
17) $i^2 - 15 i + 65$
18) $b^2 + 7 b + 77$
19) $k^2 - 15 k + 87$
20) $a^2 + 21 a - 4$

20)
$$a^2 + 21a - 4$$

Answers

1)
$$u = 4$$
; (4, 2)

2)
$$g = -5$$
; $(-5, -1)$

3)
$$z = 2$$
; $(2, -5)$

4)
$$p = 3; (3, 5)$$

5)
$$e = 6$$
; $(6, -28)$

6)
$$\alpha = 3$$
; (3, -10)

7)
$$u = -3$$
; $(-3, 11)$

8)
$$h = 5$$
; $(5, -29)$

9)
$$i = -6$$
; $(-6, -43)$

10)
$$s = 4$$
; $(4, -12)$

11)
$$c = 3/2; (3/2, 59/4)$$

12)
$$z = -5/2$$
; $(-5/2, 111/4)$

2)
$$g = -5$$
; $(-5, -1)$ | 12) $z = -5/2$; $(-5/2, 111/4)$
3) $z = 2$; $(2, -5)$ | 13) $i = -9/2$; $(-9/2, 47/4)$

4)
$$p = 3$$
; (3, 5) 14) $s = 7/2$; (7/2, 27/4)

5)
$$e = 6$$
; $(6, -28)$ 15) $k = -11/2$; $(-11/2, 367/4)$

6)
$$\alpha = 3$$
; (3, -10) 16) $x = -3/2$; (-3/2, -229/4)

7)
$$u = -3$$
; $(-3, 11)$ 17) $f = 13/2$; $(13/2, 91/4)$

8)
$$h = 5$$
; $(5, -29)$
18) $b = -7/2$; $(-7/2, 259/4)$
9) $i = -6$; $(-6, -43)$
19) $k = 15/2$; $(15/2, 123/4)$

19)
$$k = 15/2$$
; (15/2, 123/4)

20)
$$\alpha = -21/2 (-21/2, -457/4)$$