Simultaneous Equations 2
 (Multiplying 1 Equation)

LI

- Solve a pair of equations for 2 missing variables.

SC

- Multiply 1 equation to get same numerical coefficients.
- 2-step equations.

Reminder

- Signs same - subtract equations.
- Signs different - add equations.

Example 1

Solve,

$$
\begin{array}{r}
4 x+2 y=2 \\
-x+3 y=3 \\
4 x+2 y=2 \\
-4 x+12 y=12
\end{array}
$$

Signs of x are different, so add: (1)+(3)

$$
\begin{array}{rlrl}
& & 14 y & =14 \\
\Rightarrow & y & =1
\end{array}
$$

Substitute $y=1$ into (2):

$$
\begin{aligned}
& -x+3 y & =3 \\
\therefore & -x+3(1) & =3 \\
\Rightarrow & -x+3 & =3
\end{aligned}
$$

$$
\Rightarrow \quad-x=0
$$

$$
\Rightarrow \quad \underline{x}=0
$$

$$
\therefore \quad x=0, y=1
$$

Example 2

Solve,

$$
2 x-y=4 \quad \text { (1) } \times 3
$$

$$
\begin{equation*}
5 x+3 y=21 \tag{2}
\end{equation*}
$$

$6 x-3 y=12$
$5 x+3 y=21$
Signs of y are different, so add: (3) 2

$$
\begin{array}{rlrl}
11 \times & =33 \\
\Rightarrow & x & =3 \\
\hline
\end{array}
$$

Substitute $x=3$ into (1):

$$
2 x-y=4
$$

$$
\therefore \quad 2(3)-y=4
$$

$$
\Rightarrow \quad 6-y=4
$$

$$
\Rightarrow \quad-y=-2
$$

$$
\Rightarrow \quad y=2
$$

$$
\therefore
$$

$$
x=3, y=2
$$

Questions

Solve each of the following pairs of equations by elimination.
a $x-2 y=1$
b $4 x+3 y=11$
c $x-5 y=13$
d $2 x+y=10$
$2 x+y=7$
$x-y=8$
$3 x-y=-9$
$3 x-4 y=26$
e $\quad a-3 b=5$
f $4 p-q=17$
$3 p-2 q=19$
g $-2 s+5 t=2$
$4 s-3 t=-22$

$$
4 s-3 t=-22
$$

h $3 c-d=-3$
$5 a+2 b=-9$

$$
3 p-2 q=19
$$

$$
2 c+4 d=5
$$

Answers

Solve each of the following pairs of equations by elimination.
a $\quad x-2 y=1$
b $4 x+3 y=11$
c $x-5 y=13$
d $2 x+y=10$
$2 x+y=7$
$x-y=8$
$3 x-y=-9$
$3 x-4 y=26$
e $\quad a-3 b=5$
f $4 p-q=17$
g $-2 s+5 t=2$
h $3 c-d=-3$
$5 a+2 b=-9$
$3 p-2 q=19$
$4 s-3 t=-22$
$2 c+4 d=5$
a $\quad x=3, y=1$
b $\quad x=5, y=-3$
c $x=-\frac{29}{7}, y=-\frac{24}{7}$
d $\quad x=6, y=-2$
e $\quad a=-1, b=-2$
f $\quad p=3, q=-5$
g $s=-\frac{52}{7}, t=-\frac{18}{7}$
h $\quad c=-\frac{1}{2}, d=\frac{3}{2}$

