Simplifying Surds 1 - Multiplication Rule

LI

- Know what a Surd is.
- Simplify a single surd.
- Add and subtract surds.

SC

- $1^{\text {st }}$ Rule of Surds.
- Factorising numbers.
- Prime numbers.
- Square numbers.
- Collecting like terms.

Examples

$$
\begin{array}{ll}
\sqrt{2} & \sqrt[3]{7} \\
\sqrt{3} & \sqrt[5]{2}
\end{array}
$$

Non-Examples
$\sqrt{4}$
$\sqrt[3]{8}$

Guide to Simplifying a Single Surd

Simplifying a single surd involves factorisation; important facts :

- The square root of any prime number is a surd.
- The square root of any whole square number is a whole number.

When factorising a single surd, look for square or whole numbers

Simplifying a Single Surd

1 $^{\text {st }}$ Rule of Surds
$\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$

Why factorise? Why not add or subtract?
$\sqrt{9+16}=\sqrt{25}=5$
$\sqrt{9}+\sqrt{16}=3+4=7$
Common Mistake 1
$\sqrt{a+b}=\sqrt{a}+\sqrt{b}$
Similarly,
Common Mistake 2

$$
\sqrt{a-b}=\sqrt{a}-\sqrt{b}
$$

Example 1

Simplify fully :
$\sqrt{20}=\sqrt{4 \times 5}$
$=\sqrt{4} \times \sqrt{5}$
$=2 \times \sqrt{5}$
$=2 \sqrt{5}$

Example 2

Simplify fully :

$$
\begin{aligned}
\sqrt{98} & =\sqrt{2 \times 49} \\
& =\sqrt{2} \times \sqrt{49} \\
& =\sqrt{2} \times 7 \\
& =7 \sqrt{2}
\end{aligned}
$$

Example 3

Simplify fully :

$$
\begin{aligned}
\sqrt{48} & =\sqrt{4 \times 12} \\
& =\sqrt{4} \times \sqrt{12} \\
& =2 \times \sqrt{4 \times 3} \\
& =2 \times \sqrt{4} \times \sqrt{3} \\
& =2 \times 2 \times \sqrt{3}
\end{aligned}
$$

$$
=4 \sqrt{3}
$$

Find a quicker way of doing this question by factorising 48 differently

Adding and Subtracting Surds

 collecting like terms in algebra
Reminders

- $6 x+3 x-x=8 x$.
- $5 x+8 y-9 x-y=-4 x+7 y$.

Example 4

Simplify fully :

$$
\begin{aligned}
& 9 \sqrt{2}+7 \sqrt{2}-\sqrt{2} \\
= & 15 \sqrt{2}
\end{aligned}
$$

Example 5

Simplify fully :

$$
\begin{aligned}
& 3 \sqrt{5}+\sqrt{20}-\sqrt{5} \\
= & 3 \sqrt{5}+2 \sqrt{5}-\sqrt{5} \\
= & 4 \sqrt{5}
\end{aligned}
$$

Example 6

Simplify fully :

$$
\begin{aligned}
& 4 \sqrt{6}-\sqrt{2}-2 \sqrt{6}+8 \sqrt{2} \\
= & 2 \sqrt{6}+7 \sqrt{2}
\end{aligned} \quad \text { Collect like surds' }
$$

Questions

1) Simplify each of the following.
a $3 \sqrt{5}+7 \sqrt{5}$
b $6 \sqrt{2}-5 \sqrt{2}$
c $9 \sqrt{7}-4 \sqrt{7}$
d $\quad \sqrt{3}+8 \sqrt{3}$
e $3 \sqrt{11}-5 \sqrt{11}$
f $\sqrt{2}+4 \sqrt{3}-5 \sqrt{2}$
g $16 \sqrt{5}-3 \sqrt{10}-7 \sqrt{5}$
h $4 \sqrt{3}+\sqrt{3}-6 \sqrt{3}$
i $5 \sqrt{2}+3 \sqrt{3}-3 \sqrt{2}+8 \sqrt{3}$
2) Express each of the following in its simplest form.
a $\sqrt{24}$
b $\sqrt{500}$
c $\sqrt{32}$
d $\sqrt{75}$
e $\sqrt{1000}$
f $3 \sqrt{8}$
g $6 \sqrt{12}$
h $5 \sqrt{50}$
3) Simplify each of the following.
a $5 \sqrt{2}+\sqrt{12}$
b $\sqrt{50}-6 \sqrt{2}$
c $3 \sqrt{7}+\sqrt{98}$
d $\sqrt{27}-4 \sqrt{3}$
e $\sqrt{125}+3 \sqrt{5}$
f $\sqrt{112}-\sqrt{28}$
g $\sqrt{8}-3 \sqrt{32}$
h $3 \sqrt{48}+2 \sqrt{75}$
i $6 \sqrt{4}-4 \sqrt{9}$

Answers		
1) a $10 \sqrt{5}$	2) a $2 \sqrt{6}$	3) a $5 \sqrt{2}+2 \sqrt{3}$
b $\sqrt{2}$	b $10 \sqrt{5}$	b $-\sqrt{2}$
c $5 \sqrt{7}$	c $4 \sqrt{2}$	c $3 \sqrt{7}+7 \sqrt{2}$
d $9 \sqrt{3}$	d $5 \sqrt{3}$	d $-\sqrt{3}$
e $-2 \sqrt{11}$	e $10 \sqrt{10}$	e $8 \sqrt{5}$
f $4 \sqrt{3}-4 \sqrt{2}$	f $6 \sqrt{2}$	f $2 \sqrt{7}$
g $9 \sqrt{5}-3 \sqrt{10}$	g $12 \sqrt{3}$	g $-10 \sqrt{2}$
h $-\sqrt{3}$	h $25 \sqrt{2}$	h $22 \sqrt{3}$
i $2 \sqrt{2}+11 \sqrt{3}$		i 0

