Edited by Foxit PDF Editor

Copyright (c) by Foxit Software Company, 2003-2009 For Evaluation Only.

LINWOOD HIGH S4 CREDIT NOTES

INDEX:
page $1 \quad$ Chapter 1: \quad Straight Line
page $4 \quad$ Chapter 2: Functions
page $7 \quad$ Chapter 3: Symmetry in the Circle
page 11 Chapter 4: Inequalities
page 13 Chapter 5: Trigonometry: Graphs and Equations
page 19 Chapter 6: Quadratic Equations
page 24 Chapter 7: Proportion
page 25 Chapter 8: Statistics
page 27 Chapter 9: Indices and Surds
page 31 Chapter 10: Trigonometry: Triangle Calculations
page 36 Chapter 11: Fractions and Equations

CHAPTER 1: STRAIGHT LINE

GRADIENT The slope of a line is given by the ratio: $m=\frac{\text { vertical change }}{\text { horizontal change }}$
For example,

$$
\begin{array}{ll}
m_{A B}=0 & \text { horizontal } \\
m_{C D}=\frac{3}{5} & \text { positive } m \\
m_{E F}=\frac{6}{3}=2 & \\
m_{G H}=\frac{6}{-4}=-\frac{3}{2} & \text { negative } m \\
m_{I J} \text { is undefined } & \text { vertical }
\end{array}
$$

$m_{I J}$ is undefined (or infinite)

Using coordinates, the gradient formula is

$$
m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}
$$

For example,

$$
\begin{gathered}
P(3,5), Q(6,7) \\
m_{P Q}=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}=\frac{7-5}{6-3}=\frac{2}{3}
\end{gathered}
$$

note: same result for

$$
\frac{5-7}{3-6}=\frac{-2}{-3}=\frac{2}{3}
$$

$m_{R S}=\frac{y_{S}-y_{R}}{x_{S}-x_{R}}=\frac{-2-4}{3-(-1)}=\frac{-6}{4}=-\frac{3}{2}$
page 1

EQUATION OF A STRAIGHT LINE

gradient m
y-intercept C units \quad ie. meets the y-axis at $(0, C)$

$$
y=m x+C
$$

For example,

$$
\begin{array}{ll}
m=\frac{3-6}{2-0}=-\frac{3}{2} & y=m x+C \\
C=6 & y=-\frac{3}{2} x+6
\end{array}
$$

The form of the equation can be rearranged to $A x+B y+C=0$
For example,

$$
\begin{aligned}
y & =-\frac{3}{2} x+6 & & \\
2 y & =-3 x+12 & & \text { multiplied each side by } 2 \\
3 x+2 y-12 & =0 & & \text { added } 3 x \text { and subtracted } 12 \text { from each side }
\end{aligned}
$$

Rearrange the equation to $y=m x+C$ for the gradient and y-intercept.
For example,

$$
\begin{array}{rlr}
3 x+2 y-12 & =0 & \\
2 y & =-3 x+12 & \\
y & =-\frac{3}{2} x+6 & \\
y & \text { isolate } y \text { - term } \\
y & \text { obtain } 1 y= \\
m & =-\frac{3}{2}, C=6 & \text { compare to the general equation }
\end{array}
$$

LINE OF BEST FIT

Example:

using two well-separated points on the line $\begin{aligned} & (16,6 \cdot 0) \\ & (12,5 \cdot 4)\end{aligned} \quad m=\frac{6 \cdot 0-5 \cdot 4}{16-12}=\frac{0 \cdot 6}{4}=0 \cdot 15$

$$
\begin{aligned}
y & =m x+C \\
W & =0 \cdot 15 T+C
\end{aligned}
$$

T W
substituting for one point on the line $(16,6 \cdot 0)$

$$
\begin{aligned}
& 6 \cdot 0=0 \cdot 15 \times 16+C \\
& 6 \cdot 0=2 \cdot 4+C \\
& C=3 \cdot 6 \\
& W=0 \cdot 15 T+3 \cdot 6 \\
& \hline \underline{~}
\end{aligned}
$$

$$
\begin{aligned}
T=30 \quad W & =0 \cdot 15 \times 30+3 \cdot 6 \\
& =4 \cdot 5+3 \cdot 6 \\
& =8 \cdot 1 \\
& \xlongequal{8 \cdot 1 \mathrm{grams}}
\end{aligned}
$$

page 3

CHAPTER 2: FUNCTIONS

A function pairs elements of one set of numbers with those of another set such that each element of the first set, the DOMAIN, has only one IMAGE under the function.

The set of images is the RANGE.
The pairings can be given by (i) an image rule and domain, (ii) listed pairings (iii) diagram. For example,
(i) function notation or formula: $f: x \rightarrow x^{2}-1$ or $f(x)=x^{2}-1,\{-2,-1,0,1,2\}$
(ii) ordered pairs:

$$
\{(-2,3),(-1,0),(0,-1),(1,0),(2,3)\}
$$

(iii) arrow diagram:

The domain is $\{-2,-1,0,1,2\}$, the range is $\{-1,0,3\}$.
Since for example $f(-2)=(-2)^{2}-1=4-1=3$, the image of -2 is 3 .
If the domain is any possible value of x then a graph is the only suitable diagram.
For example,

LINEAR

CUBIC
$f(x)=\frac{1}{x}, x \neq 0$

RECIPROCAL

Copyright (c) by Fosit Software Company, 2003-2009 For Evaluation Only.

QUADRATIC FUNCTIONS

$f(x)=a x^{2}+b x+c, a \neq 0$, where a, b and c are constants.
The graph is a curve called a PARABOLA.
For example,
$f(x)=x^{2}-2 x-3$

\boldsymbol{x}	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
\boldsymbol{x}^{2}	4	1	0	1	4	9	16
$-2 \boldsymbol{x}$	4	2	0	-2	-4	-6	-8
$\mathbf{- 3}$	-3	-3	-3	-3	-3	-3	-3
$\boldsymbol{f (\boldsymbol { x })}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{- 3}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{0}$	$\mathbf{5}$
points	$(-2,5)$	$(-1,0)$	$(0,-3)$	$(1,-4)$	$(2,-3)$	$(3,0)$	$(4,5)$

page 5

FORMULAE

Examples:
(1) If $f(x)=\frac{2 x}{x+2}, x \neq-2$, evaluate $f(-3) . \quad f(-3)=\frac{2 \times(-3)}{-3+2}=\frac{-6}{-1}=6$

Note: -2 is not allowed for x as it has no image under the function (cannot divide by 0).
(2) If $g(x)=5-2 x$ and $g(a)=11$, find a.

$$
\begin{aligned}
g(a) & =5-2 a \\
11 & =5-2 a \\
2 a & =5-11 \\
2 a & =-6 \\
a & =-3
\end{aligned}
$$

(3) If $h(x)=x^{2}-2 x$, fully simplify $h(-a)-h(a)$

$$
\begin{aligned}
h(a) & =a^{2}-2 a \\
h(-a) & =(-a)^{2}-2(-a)=a^{2}+2 a \\
h(-a)-h(a) & =a^{2}+2 a-\left(a^{2}-2 a\right) \\
& =a^{2}+2 a-a^{2}+2 a \\
& =4 a
\end{aligned}
$$

CHAPTER 3: SYMMETRY IN THE CIRCLE

angle in a semicircle is a right-angle.
the perpendicular bisector of a chord is a diameter.
a tangent and the radius drawn to the point of contact form a right-angle.

ANGLES

Examples:
(1)

radius $O A=O B$ so $\triangle A O B$ is isosceles and Δ angle sum 180° :

$$
\angle O B A=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ}
$$

tangent $C D$ and radius $O B: \angle O B C=90^{\circ}$

Calculate the size of angle $\mathrm{ABC} . \quad \angle A B C=90^{\circ}-30^{\circ}=60^{\circ}$
(2)

diameter $A B$ bisects chord $C D: \angle A M D=90^{\circ}$
$\triangle A M D$ angle sum 180° :
$\angle A D M=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
angle in a semicircle : $\angle A D B=90^{\circ}$
Calculate the size of angle BDC. $\angle B D C=90^{\circ}-60^{\circ}=30^{\circ}$

PYTHAGORAS' THEOREM

Example:

A circular road tunnel, radius 10 metres, is cut through a hill.

The road has a width 16 metres.
Find the height of the tunnel.

the diameter drawn is the perpendicular bisector of the chord: Δ is right-angled so can apply Pyth. Thm.

$$
\begin{aligned}
x^{2} & =10^{2}-8^{2} \\
& =100-64 \\
& =36 \\
x & =\sqrt{36} \\
x & =6
\end{aligned}
$$

$$
\begin{aligned}
h & =x+10 \\
& =6+10 \\
h & =16
\end{aligned}
$$

$$
\text { height } 16 \text { metres }
$$

SECTORS

$\frac{\angle A O B}{\angle C O D}=\frac{\operatorname{arc} A B}{\operatorname{arc} C D}=\frac{\text { area of sector } A O B}{\text { area of sector } C O D} \quad \frac{\angle A O B}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi d}=\frac{\text { area of sector } A O B}{\pi r^{2}}$

Choose the appropriate pair of ratios based on:
(i) the ratio which includes the quantity to be found
(ii) the ratio for which both quantities are known (or can be found).

Examples:
(1) Find the exact length of major arc AB .

$$
\begin{align*}
& \begin{aligned}
& \frac{\angle A O B}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi d} \\
& \begin{aligned}
\frac{240^{\circ}}{360^{\circ}} & =\frac{\operatorname{arc} A B}{\pi \times 12} \\
\operatorname{arc} A B & =\frac{240^{\circ}}{360^{\circ}} \times \pi \times 12 \\
& =8 \pi \mathrm{~cm}
\end{aligned}
\end{aligned} \begin{aligned}
\end{aligned} \\
&
\end{align*}
$$

diameter $d=2 \times 6 \mathrm{~cm}=12 \mathrm{~cm}$
reflex $\angle A O B=360^{\circ}-120^{\circ}=240^{\circ}$

(2) Find the size of angle AOB.
A

$$
\begin{aligned}
& \frac{\angle A O B}{360^{\circ}}=\frac{\text { area of sector } A O B}{\pi r^{2}} \\
& \begin{aligned}
\frac{\angle A O B}{360^{\circ}} & =\frac{84}{\pi \times 9 \times 9} \\
\angle A O B & =\frac{84}{\pi \times 9 \times 9} \times 360^{\circ} \\
& =118 \cdot 835 \ldots
\end{aligned} \\
& \angle A O B
\end{aligned} \begin{aligned}
& \angle 119^{\circ}
\end{aligned}
$$

(3) Find the exact area of sector AOB .

$$
\begin{aligned}
\frac{\operatorname{arc} A B}{\pi d} & =\frac{\text { area of sector } A O B}{\pi r^{2}} \\
\frac{24}{\pi \times 12} & =\frac{\text { area of sector } A O B}{\pi \times 6 \times 6} \\
\text { area of sector } A O B & =\frac{24}{\pi \times 12} \times \pi \times 6 \times 6 \\
& =72 \mathrm{~cm}^{2}
\end{aligned}
$$

(4) Find the exact area of sector AOB .

$$
\begin{aligned}
\frac{\operatorname{arc} A B}{\operatorname{arc} C D} & =\frac{\text { area of sector } A O B}{\text { area of sector } C O D} \\
\frac{3}{2} & =\frac{\text { area of sector } A O B}{4}
\end{aligned}
$$

area of sector $A O B=\frac{3}{2} \times 4$

$$
=6 \mathrm{~cm}^{2}
$$

CHAPTER 4: INEQUALITIES

Simplify by following the rules for equations:

addition and subtraction

$x+a>b$

$$
x-a>b
$$

$$
x>b-a \quad x \quad>b+a
$$

multiplication and division

by a positive number
by a negative number reverse the direction of the inequality sign
$\frac{x}{a}>b$
$a x>b$
$\frac{x}{a}>b$
$a x>b$
$x>a b$
$x>\frac{b}{a}$
$x<a b$

$$
x<\frac{b}{a}
$$

Examples:
(1)

$$
\begin{aligned}
8+3 x & >2 \\
+3 x & >-6 \\
x & >\frac{-6}{+3} \quad \begin{array}{l}
\text { divided each side by }+3 \\
\text { notice sign unchanged }
\end{array} \\
x & >-2
\end{aligned}
$$

$$
\begin{align*}
8-3 x & >2 \tag{2}\\
-3 x & >-6 \quad \text { subtracted } 8 \text { from each side }
\end{align*}
$$

$$
x<\frac{-6}{-3} \quad \begin{aligned}
& \text { divided each side by } \\
& \text { notice sign reversed }
\end{aligned}
$$

$$
x<2 \quad \text { simplified }
$$

$$
4 x-6 \leq x-1
$$

$$
3 x-6 \leq-1
$$

$$
3 x \leq 5
$$

$$
x \leq \frac{5}{3}
$$

page 11

$$
\begin{align*}
& \begin{array}{rlrl}
x-6 & \leq 4 x-1 & x-6 & \leq 4 x-1 \\
-3 x-6 & \leq-1 & -6 & \leq 3 x-1 \\
-3 x & \leq 5 & \text { or } & -5
\end{array} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& -3 x-6 \leq-1 \quad-6 \leq 3 x-1 \\
& -3 x \leq 5 \text { or }-5 \leq 3 x \\
& x \geq \frac{5}{-3} \quad \frac{-5}{3} \leq x \\
& x \geq-\frac{5}{3} \\
& x \geq-\frac{5}{3}
\end{aligned}
$$

RESTRICTIONS ON SOLUTIONS

Examples:
(1)
$x \leq \frac{5}{2} \quad$ where x is a whole number $x=0,1,2$
(2)
$-2 \leq x<2 \quad$ where x is an integer

$$
x=-2,-1,0,1
$$

MODELLING

Example:

The perimeter of the rectangle is less than that of the triangle.
Find the possible values of t where t is a positive integer.

$$
\begin{aligned}
& 2(2 t+1)+2(t+3)<3 t+t+5+t+7 \\
& 4 t+2+2 t+6<3 t+t+5+t+7 \\
& 6 t+8<5 t+12 \\
& t+8<12 \\
& t<4 \\
& t=1,2,3
\end{aligned}
$$

CHAPTER 5: TRIGONOMETRY: GRAPHS \& EQUATIONS GRAPHS

Each graph has a PERIOD of 360° (repeats every 360°).
The maximum value of each function is +1 , the minimum is -1 .
The cosine graph is the sine graph shifted 90° to the left.

The tangent graph has a PERIOD of 180°.
The maximum value is positive infinity , the minimum is negative infinity.

Edited by Foxit PDF Editor

Copyright (c) by Foxit Software Company, 2003-2009 For Evaluation Only.
TRANSFORMATIONS Same rules for $y=\sin x^{\circ}$ and $y=\cos x^{\circ}$.
Y-STRETCH $\quad y=\mathbf{n} \sin x^{\circ} \quad$ maximum value $+n$, minimum value $-n$.
X-STRETCH $y=\sin \mathbf{n} x^{\circ} \quad$ has period $\frac{360^{\circ}}{n}$. There are n cycles in 360°.
For example,
(1)

(2)

page 14

Y-SHIFT	$\mathrm{y}=\sin x^{\circ}+a$	graph shifted a units vertically.
X-SHIFT	$\mathrm{y}=\sin (x+a)^{\circ}$	graph shifted $-\mathrm{a}^{\circ}$ horizontally.

For example,

COMBINING TRANSFORMATIONS

For example,

(2)

maximum value $4 \times 1+6=10$ when $3 x=90$ maximum turning point $(30,10)$ $x=30$
minimum value $4 \times(-1)+6=2$ when $3 x=270$ minimum turning point $(90,2)$ $x=90$

EQUATIONS

Example:
The graphs with equations $\mathrm{y}=5+3 \cos x^{\circ}$ and $\mathrm{y}=4$ are shown.

$5+3 \cos x^{\circ}=4$
$3 \cos x^{\circ}=-1$
$\cos x^{\circ}=-\frac{1}{3}$
$x=\underline{\underline{109 \cdot 5} \text { or } 250 \cdot 5}$

* $\mathbf{A}, \mathbf{S}, \mathbf{T}, \mathbf{C}$ is where functions are positive:

	$\mathrm{A} \times$
$\cos -$	$\cos +$
$180-\mathrm{a}=109 \cdot 5$	$\mathrm{a}=\cos ^{-11 / 3}=70 \cdot 528 \ldots$
$180+\mathrm{a}=250 \cdot 5$	$360-\mathrm{a}=289 \cdot 5$
$\cos -$	$\cos +$
$\swarrow \mathrm{T}$	$\mathrm{C} \times$

* A all functions are positive S sine function only is positive T cosine function only is positive C tangent function only is positive

IDENTITIES

$$
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1 \quad \tan x^{\circ}=\frac{\sin x^{\circ}}{\cos x^{\circ}}
$$

Example:
If $\sin x^{\circ}=\frac{1}{2}$, without finding x, find the exact values of $\cos x^{\circ}$ and $\tan x^{\circ}$.

$$
\begin{array}{rlrl}
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ} & =1 & \tan x^{\circ} & =\frac{\sin x^{\circ}}{\cos x^{\circ}} \\
\left(\frac{1}{2}\right)^{2}+\cos ^{2} x^{\circ} & =1 & & =\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \\
\frac{1}{4}+\cos ^{2} x^{\circ} & =1 & \tan x^{\circ} & =\frac{1}{\sqrt{3}} \\
\cos ^{2} x^{\circ} & =\frac{3}{4} &
\end{array}
$$

EXACT VALUES

Remember: $\quad \sin 30^{\circ}=\frac{1}{2}$

$$
\tan 45^{\circ}=1 \quad \text { ie. } \frac{1}{1}
$$

Draw triangles:

using Pyth. Thm .

For example,

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2}, \tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$$
\cos 45^{\circ}=\frac{1}{\sqrt{2}}, \sin 45^{\circ}=\frac{1}{\sqrt{2}}
$$

CHAPTER 6: QUADRATIC EQUATIONS

An equation of the form $a x^{2}+b x+c=0, a \neq 0$, where a, b and c are constants.
The value(s) of x that satisfy the equation are the roots of the equation.

FACTORISATION

If $b^{2}-4 a c=$ a square number ie. $0,1,4,9,16 \ldots .$.
then the quadratic expression can be factorised to solve the equation.
Examples:
Solve:
(1) $4 n-2 n^{2}=0$
$2 n(2-n)=0$
$2 n=0 \quad$ or $\quad 2-n=0$
$\underline{\underline{n=0} \quad \text { or } \quad n=2}$
(2) $2 t^{2}+t-6=0$

$$
(2 t-3)(t+2)=0
$$

$$
2 t-3=0 \quad \text { or } \quad t+2=0
$$

$$
2 t=3
$$

$$
t=\frac{3}{2} \quad \text { or } \quad t=-2
$$

The equation may need to be rearranged:

$$
\begin{equation*}
(w+1)^{2}=2(w+5) \tag{3}
\end{equation*}
$$

(4) $x+2=\frac{15}{x}, x \neq 0$

$$
\begin{aligned}
w^{2}+2 w+1 & =2 w+10 \\
w^{2}-9 & =0 \\
(w+3)(w-3) & =0 \\
w+3=0 & \text { or }
\end{aligned} \quad w-3=0, ~ \begin{array}{rlr}
w=-3 & \text { or } & w=3 \\
\hline \hline
\end{array}
$$

$$
\begin{gathered}
x(x+2)=15 \\
x^{2}+2 x=15 \\
x^{2}+2 x-15=0 \\
(x+5)(x-3)=0 \\
x+5=0 \quad \text { or } \\
x=-5 \quad \text { or }
\end{gathered}
$$

QUADRATIC FORMULA

A quadratic equation $a x^{2}+b x+c=0$ can be solved using the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0
$$

Note: (1) Use a calculator!
(2) $b^{2}-4 a c$ will not be negative, otherwise there is no solution.

Example:

Find the roots of the equation $3 t^{2}-5 t-1=0$, correct to two decimal places.

$$
\begin{aligned}
& 3 t^{2}-5 t-1=0 \\
& a t^{2}+b t+c=0 \\
& a=3, b=-5, c=-1 \\
& b^{2}-4 a c=(-5)^{2}-4 \times 3 \times(-1)=37 \\
& -b=-(-5)=+5 \\
& 2 a=2 \times 3=6
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& t=\frac{5 \pm \sqrt{37}}{6} \\
&=\frac{5-\sqrt{37}}{6} \text { or } \frac{5+\sqrt{37}}{6} \\
&=\frac{-1 \cdot 0827 \ldots .}{6} \text { or } \frac{11 \cdot 0827 \ldots}{6} \\
& t=-0 \cdot 1804 \ldots . \\
& \text { or } \quad 1 \cdot 8471 \ldots . \\
& \text { roots are }-0 \cdot 18 \text { and } 1 \cdot 85
\end{aligned}
$$

GRAPHS

A sketch of the graph of a quadratic function should show where the parabola meets the axes and the maximum or minimum turning point.

Example:
Sketch the graph of the function $f(x)=x^{2}-2 x-3$.
(i) meets the Y-axis where $x=0$

$$
\begin{aligned}
f(0)=0^{2}-2 \times 0-3= & -3 \text { ie. } y=-3 \\
& \text { point }(0,-3)
\end{aligned}
$$

(ii) meets the X-axis where $y=0$

$$
\begin{aligned}
& x^{2}-2 x-3=0 \\
& (x+1)(x-3)=0 \\
& x+1=0 \quad \text { or } \quad x-3=0 \\
& x=-1 \quad \text { or } \quad x=3 \\
& \text { points }(-1,0) \text { and }(3,0)
\end{aligned}
$$

Note: zeros of the graph are -1 and 3 .
(iii) axis of symmetry
vertical line half-way between the zeros
$x=\frac{-1+3}{2}=\frac{2}{2}=1$, equation $x=1$.

(iv) turning point
lies on the axis of symmetry $x=1$

$$
\begin{array}{r}
f(1)=1^{2}-2 \times 1-3=-4 \text { ie. } y=-4 \\
\text { point }(\mathbf{1},-4)
\end{array}
$$

Note: (1) from the graph, $(1,-4)$ is a minimum turning point.
(2) the minimum value of the function is -4 .

APPLICATIONS

Problems involving maxima or minima which can be modelled by a quadratic equation.
Example:
A sheet of metal 40 cm . wide is folded $x \mathrm{~cm}$ from each end to form a gutter.
To maximise water flow the rectangular cross-section should be as large as possible.

Find the maximum cross-sectional area possible.

$$
\begin{aligned}
A & =l b \\
& =x(40-2 x) \quad \text { sketch the graph } A=40 x-2 x^{2} \\
& =40 x-2 x^{2}
\end{aligned}
$$

Zeros:

$$
\begin{array}{rlrlrl}
40 x-2 x^{2} & =0 \\
2 x & =0 & \\
2 x & =0 & \text { or } & 20-x & =0 \\
x & =0 & \text { or } & x & =20
\end{array}
$$

Turning Point:

$(0+20) \div 2=10$
axis of symmetry $x=10$
$y=40 x-2 x^{2}$
$y=40 \times 10-2 \times 10^{2}=200$
maximum turning point $(10,200)$

Maximum area 200 square centimetres.

ITERATION

Repeating a process to improve the accuracy of an approximate root.

The root is where $f(x)=0$
The value of $f(x)$, the y-coordinate, changes from negative to positive around the root.

To show a root lies between a and b, show $f(a)$ is negative and $f(b)$ is positive.

Example:
(a) Show that the cubic equation $x^{3}-2 x-3=0$ has a root between 1 and 2 .
(b) Find the value of the root correct to one decimal place.
(a) $\quad f(x)=x^{3}-2 x-3$
$x=1 \quad f(1)=1^{3}-2 \times 1-3=-4 \quad$ between 1 and 2 the function changed sign,
$x=2 \quad f(2)=2^{3}-2 \times 2-3=+1 \quad$ so a root lies between 1 and 2
(b)

$$
\begin{array}{lll}
x=1 \cdot 5 & 1 \cdot 5^{3}-2 \times 1 \cdot 5-3=-2 \cdot 625 & \text { between } 1.5 \text { and } 2 \text { the sign changes } \\
x=1 \cdot 6 & 1 \cdot 6^{3}-2 \times 1 \cdot 6-3=-2 \cdot 104 \\
x=1 \cdot 7 & 1 \cdot 7^{3}-2 \times 1 \cdot 7-3=-1 \cdot 487 \\
x=1 \cdot 8 & 1 \cdot 8^{3}-2 \times 1 \cdot 8-3=-0 \cdot 768 \quad \text { between } 1.8 \text { and } 1.9 \text { the sign changed, } \\
x=1 \cdot 9 & 1 \cdot 9^{3}-2 \times 1 \cdot 9-3=+0 \cdot 059 \quad \text { so a root lies between } 1.8 \text { and } 1.9 \\
& \\
x=1 \cdot 85 & 1 \cdot 85^{3}-2 \times 1 \cdot 85-3=-0 \cdot 368375
\end{array}
$$

between 1.85 and 1.9 the sign changed, so a root lies between 1.85 and 1.9
root is 1.9

CHAPTER 7: PROPORTION

DIRECT PROPORTION or VARIATION

Two quantities A and B are in direct proportion if changing A by some factor changes B by the same factor.

The graph of A against B is a straight line through the origin.
The relation can be given as an equation $A=k B$, where k is the constant of variation.
"A varies directly as B"

INVERSE PROPORTION or VARIATION

Two quantities A and B are in inverse proportion if changing A by some factor changes B by the reciprocal (multiplcative inverse) of that factor.
The graph of A against $\frac{1}{B}$ is a straight line through the origin.
The relation can be given as an equation $A=k \frac{1}{B}$, where k is the constant of variation.
"A varies inversely as B"

JOINT VARIATION

Example:
P varies directly as N and as T and inversely as the square of r .
(a) If $\mathrm{P}=15$ when $\mathrm{N}=8, \mathrm{~T}=10$ and $\mathrm{r}=4$, find a formula connecting $\mathrm{P}, \mathrm{N}, \mathrm{T}$ and r .
(b) Hence: (i) find P when $\mathrm{N}=4, \mathrm{~T}=6$ and $\mathrm{r}=3$.
(ii) find T when $\mathrm{P}=15, \mathrm{~N}=5$ and $\mathrm{r}=2$.
(a)
(b) (i)

$$
\begin{aligned}
P & =k \frac{N T}{r^{2}} \\
15 & =k \frac{8 \times 10}{4^{2}} \\
15 & =k \times 5 \\
k & =3 \\
P & =\frac{3 N T}{r^{2}}
\end{aligned}
$$

(ii)

$$
P=\frac{3 N T}{r^{2}}
$$

$$
P=\frac{3 N T}{r^{2}}
$$

$$
=\frac{3 \times 4 \times 6}{3^{2}}
$$

$$
15=\frac{3 \times 5 \times T}{2^{2}}
$$

$$
P=8
$$

CHAPTER 8: STATISTICS SUPPLEMENT
 STANDARD DEVIATION

Is a measure of the spread (dispersion) of a set of data, giving a numerical value to how the data deviates from the mean.

Formulae:
mean $\bar{x}=\frac{\sum x}{n} \quad$ standard deviation $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \quad$ or $\quad s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$

Examples,
(1) High Standard Deviation: results spread out

mean $=38$, standard deviation $=7 \cdot 5$
(2) Low Standard Deviation: results clustered around the mean

mean $=38$, standard deviation $=3 \cdot 8$

Calculations for Example (2):
totals

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
30	-8	64
33	-5	25
34	-4	16
35	-3	9
36	-2	4
36	-2	4
37	-1	1
37	-1	1
37	-1	1
38	0	0
38	0	0
38	0	0
38	0	0
39	+1	1
39	+1	1
40	+2	4
41	+3	9
44	+6	36
44	+6	36
46	+8	64
760	0	276

or

	x	x^{2}
	30	900
	33	1089
	34	1156
	35	1225
	36	1296
	36	1296
	37	1369
	37	1369
	37	1369
	38	1444
	38	1444
	38	1444
	38	1444
	39	1521
	39	1521
	40	1600
	41	1681
	44	1936
	44	1936
	46	2116
totals	760	29156

$$
\begin{array}{rlrl}
s & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} & s & =\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}} \\
\bar{x}=\frac{\sum x}{n} & & \sqrt{\frac{276}{19}} & \\
=\frac{760}{20} & & =\sqrt{\frac{29156-\frac{760^{2}}{20}}{19}} \\
=38 & & \text { or } & \\
& =3.811 \ldots . & & =\sqrt{\frac{276}{19}} \\
& \approx 3.8 & & =3.811 \ldots . \\
& & \approx 3.8
\end{array}
$$

CHAPTER 9: INDICES AND SURDS

INDICES

base $\longrightarrow a^{n} \longleftarrow$ index or exponent

INDICES RULES: require the same base.
Examples:

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n}
\end{aligned}
$$

$$
\begin{aligned}
&\left(a^{m}\right)^{n}=a^{m n} \\
&(a b)^{n}=a^{n} b^{n}\left(2 a^{3} b\right)^{2}=2^{2} a^{10} \\
& \frac{1}{a^{p}}=a^{-p} 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \\
& a^{0}=1\left(2 b^{6} b^{3}\right)^{0}=1 \\
& a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \\
& 8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}=2^{4}=16 \\
& 8^{-\frac{4}{3}}=\frac{1}{8^{\frac{4}{3}}}=\frac{1}{16}
\end{aligned}
$$

EXPONENTIAL FUNCTION

A function where the variable x is the exponent $f(x)=a^{x}$
For example, $f(x)=2^{x}$

SURDS

NUMBER SETS:
Natural numbers $\quad \mathrm{N}=\{1,2,3 \ldots\}$
Whole numbers $\quad W=\{0,1,2,3 \ldots\}$
Integers $\mathrm{Z}=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$

Rational numbers, Q , can be written as a division of two integers.
Irrational numbers cannot be written as a division of two integers.
Real numbers, R , are all rational and irrational numbers.

SURDS ARE IRRATIONAL ROOTS.
For example, $\sqrt{2}, \sqrt{\frac{5}{9}}, \sqrt[3]{16}$ are surds.
whereas $\sqrt{25}, \sqrt{\frac{4}{9}}, \sqrt[3]{-8}$ are not surds as they are $5, \frac{2}{3}$ and -2 respectively.

SIMPLIFYING SURDS:

RULES: $\quad \sqrt{m n}=\sqrt{m} \times \sqrt{n}$

$$
\sqrt{\frac{m}{n}}=\frac{\sqrt{m}}{\sqrt{n}}
$$

Examples:
(1) Simplify $\sqrt{24} \times \sqrt{3}$
(2) Simplify $\sqrt{72}+\sqrt{48}-\sqrt{50}$
$\sqrt{24} \times \sqrt{3}$
$=\sqrt{72}$
36 is the largest

$$
\begin{aligned}
& \sqrt{72}+\sqrt{48}-\sqrt{50} \\
= & \sqrt{36} \times \sqrt{2}+\sqrt{16} \times \sqrt{3}-\sqrt{25} \times \sqrt{2} \\
= & 6 \sqrt{2}+4 \sqrt{3}-5 \sqrt{2} \\
= & 6 \sqrt{2}-5 \sqrt{2}+4 \sqrt{3} \\
= & \sqrt{2}+4 \sqrt{3}
\end{aligned}
$$

$=\sqrt{36} \times \sqrt{2} \quad$ square number which is a factor of 72
$=6 \times \sqrt{2}$
$=6 \sqrt{2}$
(3) Remove the brackets and fully simplify:
(a) $(\sqrt{3}-\sqrt{2})^{2}$
(b) $(3 \sqrt{2}+2)(3 \sqrt{2}-2)$
$=(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})$
$=(3 \sqrt{2}+2)(3 \sqrt{2}-2)$
$=\sqrt{3}(\sqrt{3}-\sqrt{2})-\sqrt{2}(\sqrt{3}-\sqrt{2})$
$=3 \sqrt{2}(3 \sqrt{2}-2)+2(3 \sqrt{2}-2)$
$=\sqrt{9}-\sqrt{6}-\sqrt{6}+\sqrt{4}$
$=9 \sqrt{4}-6 \sqrt{2}+6 \sqrt{2}-4$
$=3-\sqrt{6}-\sqrt{6}+2 \quad=18-6 \sqrt{2}+6 \sqrt{2}-4$
$=5-2 \sqrt{6} \quad=14$

RATIONALISING DENOMINATORS:

Removing surds from the denominator.

Examples:

Express with a rational denominator:
(1) $\frac{4}{\sqrt{6}}$
(2) $\frac{\sqrt{3}}{3 \sqrt{2}}$
$\frac{4}{\sqrt{6}}$
$=\frac{4 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \quad \begin{aligned} & \text { multiply the 'top' and 'bottom' } \\ & \text { by the surd on the denominator }\end{aligned}$
$=\frac{4 \sqrt{6}}{6}$
$=\frac{\sqrt{6}}{3 \times \sqrt{4}}$
$=\frac{2 \sqrt{6}}{3}$

CHAPTER 10: TRIGONOMETRY: TRIANGLE CALCULATIONS SINE RULE

NOTE: requires at least one side and its opposite angle to be known.

FINDING AN UNKNOWN SIDE

Example:

relabel triangle with a as uknown side
known angle/side pair labelled B and b

$\frac{a ?}{\sin A}=\frac{b \checkmark}{\sin B}=\frac{c x}{\sin C}$

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{a}{\sin 43^{\circ}} & =\frac{6}{\sin 55^{\circ}} \\
a & =\frac{6}{\sin 55^{\circ}} \times \sin 43^{\circ} \\
& =4.995 \ldots . \\
Q R & \approx 5.0 \mathrm{~m}
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

Example:

Find the size of angle PQR .
cannot find angle PQR directly but can find angle QPR first relabel triangle with A as uknown angle QPR
known angle/side pair labelled B and b
use the Sine Rule with the angles on the 'top'

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{5} & =\frac{\sin 55^{\circ}}{6} \\
\sin A & =\frac{\sin 55^{\circ}}{6} \times 5 \\
& =0 \cdot 682 \ldots . \\
A & =\sin ^{-1} 0 \cdot 682 \ldots \ldots \\
\angle Q P R & =43 \cdot 049 \ldots . .
\end{aligned}
$$

$$
\begin{aligned}
\angle P Q R & =180-55-43 \cdot 049 \ldots . . \\
& =81 \cdot 950 \ldots . . \\
\angle P Q R & \approx 82 \cdot 0^{\circ}
\end{aligned}
$$

COSINE RULE

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

FINDING AN UNKNOWN SIDE $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
NOTE: requires knowing 2 sides and the angle between them.
Example:

Find the length of side PR.
relabel triangle with a as uknown side
known sides labelled b and c , it doesn't matter which one is b or c

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =6^{2}+5^{2}-2 \times 6 \times 5 \times \cos 82^{\circ} \\
a^{2} & =52 \cdot 649 \ldots \cdot \\
a & =\sqrt{52 \cdot 649 \ldots \cdot} \\
& =7 \cdot 256 \ldots \ldots \\
P R & =7 \cdot 3 m
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
NOTE: requires knowing all 3 sides.

Example:

Find the size of angle PQR .
relabel the triangle with A as the uknown angle and a as its opposite side other sides labelled b and c , it doesn't matter which one is b or c

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{6^{2}+5^{2}-9^{2}}{2 \times 6 \times 5} \\
& =\frac{-20}{60} \\
\cos A & =-0 \cdot 333 \ldots . \\
A & =\cos ^{-1}(-0 \cdot 333 \ldots . .) \\
& =109 \cdot 471 \ldots . . \\
\angle P Q R & =109 \cdot 5^{\circ}
\end{aligned}
$$

AREA FORMULA

$$
\text { Area } \triangle A B C=\frac{1}{2} b c \sin A
$$

NOTE: requires knowing 2 sides and the angle between them.

Example:

Find the area of triangle PQR .
relabel triangle with A as the known angle between 2 known sides
the 2 known sides labelled b and c , it doesn't matter which one is b or c

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{1}{2} b c \sin A \\
& =\frac{1}{2} \times 6 \times 5 \times \sin 82^{\circ} \\
& =14.854 \ldots . . \\
\text { Area } & =14.8 \mathrm{~m}^{2}
\end{aligned}
$$

CHAPTER 11: FRACTIONS AND EQUATIONS

ALGEBRAIC FRACTIONS

SIMPLIFYING: (i) fully factorise 'top' and 'bottom'
(ii) 'cancel' common factors between 'top' and 'bottom'

Examples:
(1) $\frac{x^{2}-9}{x^{2}+2 x-3}$
(2) $\frac{x-3}{2 x^{2}-6 x}$
(3) $\frac{3 a^{2} b}{3 a^{2}+3 a b}$
$=\frac{(x-3)(x+3)}{(x-1)(x+3)}$
$=\frac{1(x-3)}{2 x(x-3)}$
$=\frac{3 a \times a b}{3 a(a+b)}$
$=\frac{x-3}{x-1}$
$=\frac{1}{2 x}$
$=\frac{a b}{a+b}$

ADD/SUBTRACT: a common denominator is required.
Examples:
(1)

$$
\frac{1}{x}+\frac{3}{x(x-3)}
$$

$$
\text { (2) } \frac{3}{x-3}-\frac{2}{x+3}
$$

$$
=\frac{1(x-3)}{x(x-3)}+\frac{3}{x(x-3)}
$$

$$
=\frac{3(x+3)}{(x-3)(x+3)}-\frac{2(x-3)}{(x-3)(x+3)}
$$

$$
=\frac{x-3+3}{x(x-3)}
$$

$$
=\frac{3(x+3)-2(x-3)}{(x-3)(x+3)}
$$

$$
=\frac{x}{x(x-3)}
$$

$$
=\frac{3 x+9-2 x+6}{(x-3)(x+3)}
$$

$$
=\frac{1}{x-3}
$$

$$
=\frac{x+15}{(x-3)(x+3)}
$$

EQUATIONS WITH FRACTIONS

(i) write the fractions with common denominators
(ii) multiply both sides of the equation to remove the denominators

Examples:
(1) Solve $\frac{1}{2}(x+3)+\frac{1}{3} x=1$

$$
\begin{aligned}
\frac{3}{6}(x+3)+\frac{2}{6} x & =\frac{6}{6} \quad \text { LCM }(2,3)=6 \\
3(x+3)+2 x & =6 \quad \text { multiplied both sides by } 6 \\
3 x+9+2 x & =6 \\
5 x & =-3 \\
x & =-\frac{3}{5}
\end{aligned}
$$

(2) Solve $\frac{4}{3-x}-\frac{1}{x}=1$

$$
\begin{aligned}
\frac{4 x}{x(3-x)}-\frac{3-x}{x(3-x)} & =\frac{x(3-x)}{x(3-x)} \quad \text { common denominator } \\
4 x-(3-x) & =x(3-x) \quad \text { multiplied both sides by } x(3-x) \\
4 x-3+x & =3 x-x^{2} \\
x^{2}+2 x-3 & =0 \\
(x+3)(x-1) & =0 \\
x+3=0 \quad \text { or } & x-1=0 \\
x=-3 \text { or } & x=1
\end{aligned}
$$

