Linwood High School

S3 CREDIT NOTES

INDEX:

page 1 Chapter 1: Calculations and the Calculator
page $5 \quad$ Chapter 2: Similar Shapes
page 9 Chapter 3: Going Places
page 11 Chapter 4: Money Matters - Saving and Spending
page 12 Chapter 5: Positive and Negative Numbers
page 14 Chapter 6: Pythagoras Theorem
page 16 Chapter 7: Brackets and Equations
page 18 Chapter 8: Statistics
page 22 Chapter 9: Trigonometry
page 24 Chapter 10: Simultaneous Equations
page 28 Chapter 11: Areas and Volumes
page 32 Chapter 12: Factorisation
page 36 Chapter 13: Money Matters - Personal Finance
page $38 \quad$ Chapter 14: Formulae
page 41 Chapter 15: Probability

CHAPTER 1: CALCULATIONS AND THE CALCULATOR

CALCULATORS AND ROUNDING
The number of significant figures indicates the accuracy of a measurement.
For example, $\quad 3400$ centimetres $=34$ metres $=0.034$ kilometres same measurement, same accuracy, each 2 significant figures.
significant figures: count the number of figures used, but
do not count zeros at the end of a number without a decimal point do not count zeros at the start of a number with a decimal point.

These zeros simply give the place-value ${ }^{1}$ of the figures and do not indicate accuracy.

rounding:

For example,	5713.4 5700	has 5 significant figures to 2 significant figures (this case, the nearest Hundred)
	0.057134 0.057	has 5 significant figures
(note 0.057000 would be wrong)		

Example involving the use of a calculator:

Evaluate $\frac{3 \cdot 24 \times 8 \cdot 47-25 \cdot 64}{2 \cdot 4+0 \cdot 84}$, giving your answer correct to 2 significant figures.

$$
\begin{array}{ll}
=\frac{1 \cdot 8028}{3 \cdot 24} & \begin{array}{ll}
\text { evaluate 'top' and 'bottom'by entering in the } \\
\text { calculator and write these answers }
\end{array} \\
=0 \cdot 5564 \ldots & \\
\text { divide 'top' by 'bottom' and write the unrounded answer } \\
\approx 0 \cdot 56 & \\
\text { write the rounded answer }
\end{array}
$$

CALCULATORS AND SCIENTIFIC NOTATION
 (STANDARD FORM)

Writing numbers in the form $a \times 10^{n}$
where $1 \leq a<10 \quad$ for a, place the decimal point after the first non-zero digit and n is an integer numbers ...-3, $-2,-1,0,1,2,3 \ldots$.

For example,

$$
\begin{aligned}
\mathbf{3 2 8 0 0} & =3 \cdot 28 \times 10 \times 10 \times 10 \times 10=\mathbf{3} \cdot \mathbf{2 8} \times \mathbf{1 0}^{4} \\
\mathbf{0} \cdot \mathbf{0 0 0 3 2 8} & =3 \cdot 28 \div 10 \div 10 \div 10 \div 10=3 \cdot 28 \div 10^{4}=\mathbf{3} \cdot \mathbf{2 8} \times \mathbf{1 0}^{-4}
\end{aligned}
$$

Notice for numbers starting $0 \cdot$ the power of 10 is negative (same as $\div 10$).

Examples involving the use of a calculator:

(1) One milligram of hydrogen gas contans 2.987×10^{20} molecules.

Calculate the number of molecules in 5 grams of hydrogen gas, giving you answer correct to 3 significant figures.

$$
\begin{array}{ll}
& 5000 \times 2 \cdot 987 \times 10^{20} \\
=1 \cdot 4935 \times 10^{24} & \text { learn to enter standard form in the calculator using the } \\
\text { appropriate button } \mathrm{EE} \text { or } \mathrm{EXP} \text { or } \times 10^{n} \quad \text { eg. } 2 \cdot 987 \mathrm{EXP} 20 \\
\approx 1 \cdot 49 \times 10^{24} \text { molecules }
\end{array}
$$

(2) The total mass of argon in a flask is $4 \cdot 15 \times 10^{-2}$ grams.

The mass of a single atom of argon is $6 \cdot 63 \times 10^{-23}$ grams.
Find, correct to 3 significant figures, the number of argon atoms in the flask.

$$
\begin{aligned}
& \frac{4 \cdot 15 \times 10^{-2}}{6 \cdot 63 \times 10^{-23}} \quad \text { use the }(-) \text { button for a minus eg. } 4.15 \operatorname{EXP}(-) 2 \\
& =6 \cdot 259 \ldots \times 10^{20} \quad \text { divide 'top' by 'bottom' and write the unrounded answer } \\
& \approx 6 \cdot 26 \times 10^{20} \text { atoms write the rounded answer }
\end{aligned}
$$

FRACTIONS No calculators!

Addition and subtraction requires a common denominator:
Example:

$$
\begin{array}{ll}
11 \frac{5}{6}-3 \frac{2}{9} & \text { least common multiple of } 6 \text { and } 9 \text { is } 18 \text { for the common denominator } \\
\frac{5 \times 3}{6 \times 3}=\frac{15}{18} & \frac{2 \times 2}{9 \times 2}=\frac{4}{18} \quad \text { both fractions now } 18 \text { ths }
\end{array}
$$

$=\mathbf{1 1} \frac{15}{18}-\mathbf{3} \frac{4}{18} \quad$ subtract whole numbers $\mathbf{1 1}-\mathbf{3}=\mathbf{8}$
$=\mathbf{8} \frac{11}{18} \quad$ while the 'bottom' stays the same at 18

Multiplication and division requires no mixed numbers:
Examples:
(1)

$$
\frac{3}{10} \text { of } 2 \frac{3}{4} \quad \begin{aligned}
& \text { of means multiply } \\
& \text { no mixed numbers, go 'top-heavy' }
\end{aligned}
$$

$$
\mathbf{2} \frac{3}{4}=\mathbf{2}+\frac{3}{4}=\frac{\mathbf{8}}{\mathbf{4}}+\frac{3}{4}=\frac{11}{4} \quad \begin{aligned}
& \text { or for the 'top' } 4 \times 2+3=11 \\
& \text { 'bottom' stays as } 4
\end{aligned}
$$

$=\frac{3}{10} \times \frac{11}{4} \quad$ multiply the 'top' numbers $3 \times 11=33$
$=\frac{33}{40}$
(2)

$$
\frac{4}{5} \div \frac{7}{8}
$$

$=\frac{4}{5} \times \frac{8}{7} \quad$ division becomes multiply by the reciprocal
$=\frac{32}{35}$

$$
\div \frac{a}{b} \text { becomes } \times \frac{b}{a}
$$

ORDER OF CALCULATION

Rule:
to change the order use brackets
x and \div before + or -
BRACKETS FIRST

Carry out separate calculations:

Examples:
(1) $\frac{5}{8}-\frac{2}{9} \times \frac{3}{4}$

$$
\begin{aligned}
& \frac{2}{9} \times \frac{3}{4} & \text { multiply first } & \frac{5}{8}-\frac{1}{6}
\end{aligned} \text { subtraction last }
$$

(2) $\left(\frac{5}{6}-\frac{1}{2}\right) \div 1 \frac{3}{4}$

$$
\begin{array}{rlrl}
& \frac{5}{6}-\frac{1}{2} & \text { brackets first } & \frac{1}{3} \div 1 \frac{3}{4} \\
= & \frac{5}{6}-\frac{3}{6} & = & \\
= & \frac{2}{3} \div \frac{7}{4} & \text { 'top-heavy' first } \\
= & \text { fully simplify } & =\frac{1}{3} \times \frac{4}{7} & \text { multiply by reciprocal } \\
& & & \\
& &
\end{array}
$$

CHAPTER 2: SIMILAR SHAPES

Shapes are similar if they are enlargement or reductions of each other.
(1) the angles remain unchanged - the shapes are equiangular.
and (2) the sides are enlarged or reduced by some scale factor (SF).

For example:
corresponding angles not equal (wrong order): shapes not equiangular so not similar.

ratios of corresponding sides not equal (no SF): shapes equiangular but not similar.

$$
\frac{4}{3} \neq \frac{2}{1}
$$

shapes equiangular and ratios of corresponding sides equal (has SF): shapes are similar.

Triangles are special:

Enlarge or reduce a triangle by some scale factor and the two triangles will be equiangular.

Rule:

If triangles are equiangular then they are similar and so the sides have been scaled.

SCALING SIDES

length scale factor, $\mathrm{SF}=\frac{\text { image side }}{\text { original side }}$
enlargement if $\quad \begin{array}{r}\mathrm{SF}>1 \\ \text { reduction if }\end{array} \quad 0<\mathrm{SF}<1$

Example:

$$
\begin{aligned}
S F & =\frac{\text { image }}{\text { original }}=\frac{6}{15}=\frac{2}{5} \\
x=\frac{2}{5} \times 16=6 \cdot 4 & \text { smaller than } 16 \text { as expected for a reduction }
\end{aligned}
$$

SCALING AREAS

To enlarge a 2D shape both dimensions, length and breadth, must be scaled.
For example,
original

sides doubled
image contains 4 of the original rectangles

Rule: if the length of the sides are made \mathbf{n} times bigger, the area of the enlarged shape is $\mathbf{n x n}$ bigger.

$$
\begin{aligned}
\text { length } S F & =\mathbf{n} \\
\text { area } S F & =n^{2}
\end{aligned}
$$

Example:

Given that the two shapes shown are similar, find the area of the larger shape.

$$
\begin{aligned}
& \text { length } S \mathrm{~F}=\frac{\text { image }}{\text { original }}=\frac{15}{12}=\frac{5}{4} \\
& \text { area } S \mathrm{~F}=\frac{5}{4} \times \frac{5}{4}=\frac{25}{16} \\
& A=\frac{25}{16} \times 48=75 \\
& \text { bigger expected for an enlargement } 48 \text { as expected for an enlargement }
\end{aligned}
$$

SCALING VOLUMES

To enlarge a 3D solid the dimensions length, breadth and height, must be scaled. For example,

sides tripled
image contains 27 of the original cuboids

Rule: if the length of the sides are made \mathbf{n} times bigger, the volume of the enlarged solid is $\mathbf{n} \times \mathbf{n} \times \mathbf{n}$ bigger.

length $\mathbf{S F}=\mathbf{n}$

 volume $\mathbf{S F}=\mathbf{n}^{3}$
Example:

Given that the two solids shown are similar, find the volume of the smaller solid.

$$
\text { length } S F=\frac{\text { image }}{\text { original }}=\frac{12}{15}=\frac{4}{5} \quad 0<S F<1 \text { as expected for a reduction }
$$

volume $S \mathrm{~F}=\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=\frac{64}{125}$

$$
V=\frac{64}{125} \times 250=128
$$

CHAPTER 3: GOING PLACES

Speed is a rate, the change of distance with time.
It is given as the distance travelled in a unit of time.
For example, $20 \mathrm{~km} / \mathrm{h}$: 20 kilometres per hour means travelling 20 kilometres in 1 hour.
Average speed only considers the change in distance and time between the start and finish of a journey. It does not take into account the varying speed during the journey.

$$
\text { average speed }=\frac{\text { total distance travelled }}{\text { total time taken }}
$$

Example:

Travel 23 km in 30 minutes, then 30 km in 45 minutes and finally 13 km in 15 minutes.
total distance 66 km , total time 90 minutes (1.5 hours)

$$
\text { average speed }=\frac{66 \mathrm{~km}}{1 \cdot 5 \text { hours }}=44 \mathrm{~km} / \mathrm{h}
$$

NOTE: The speeds at each stage $46 \mathrm{~km} / \mathrm{h}, 40 \mathrm{~km} / \mathrm{h}$ and $52 \mathrm{~km} / \mathrm{h}$ average $46 \mathrm{~km} / \mathrm{h}$. None of these are involved in calculating the average speed.

Distance/Time Graphs

The slope of the graph is the speed. The steeper the graph the greater the speed.
For example,

page 9

FORMULAE

WATCH UNITS! The distance and time units must match the speed units.
For example,
speed $\mathbf{k m} / \mathbf{h}$ requires using time in hours and distance in kilometres $\mathbf{c m} / \mathbf{s}$ requires using time in seconds and distance in centimetres

Examples:
(1) Find the speed if:
travel 30 km in 1 hour 12 mins
(2) Find the time if:
travel 50 km at $12 \mathrm{~km} / \mathrm{h}$
(3) Find the distance if: travel for 2 mins at $8 \mathrm{~cm} / \mathrm{s}$
units:
12 min $=12 \div 60=0.2$ hours $2 \mathrm{~min}=2 \times 60=120 \operatorname{secs}$
so 1 hour $12 \mathrm{mins}=1.2$ hours
km and hours
results in speed in km/h
km matches $\mathbf{k m} / h$ results in time in hours
seconds matches cm / s results in distance in cm

calculations:

$$
\begin{aligned}
T & =\frac{D}{S} \\
& =50 \div 12 \\
& =4 \cdot 1666 \ldots . \text { hours } \\
& =4 \text { hours } 10 \text { mins }
\end{aligned}
$$

$$
\begin{aligned}
S & =\frac{D}{T} \\
& =30 \div 1 \cdot 2 \\
& =25 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
D=S T
$$

$$
=8 \times 120
$$

$$
=960 \mathrm{~cm}
$$

time units: $0 \cdot 1666 \ldots$ hours $=0 \cdot 1666 \ldots$ x $60=10 \mathrm{~min}$
so $4 \cdot 1666 \ldots$ hours $=4$ hour 10 mins

CHAPTER 4: SAVING AND SPENDING

Examples:
(1) earnings

GROSS PAY = BASIC PAY + OVERTIME ,BONUS ,COMMISSION etc NET PAY $=$ GROSS PAY - DEDUCTIONS (tax , national insurance etc)
(i) 40 hours at basic rate $£ 8.40$ per hour. 6 hours overtime at 'time and a half'.
overtime rate $=£ 8.40 \times 1.5=£ 12.60$
basic pay $=£ 8.40 \times 40=£ 336$
overtime pay $=£ 12.60 \times 6=£ 75.60$
gross pay $=£ 336+£ 75 \cdot 60=£ 411 \cdot 60$

(2) simple interest

Invest $£ 12000$ for 8 months at 6% pa ($\mathrm{pa}=$ per annum, per year)
for 1 year $£ 12000 \div 100 \times 6=£ 720$
for 8 months $£ 720 \div 12 \times 8=£ 480$
(4) $\mathbf{H P}$

To purchase a TV requires a $£ 60$ deposit and 24 monthly instalments of $£ 12.50$

$$
\text { instalments }=24 \times £ 12 \cdot 50=£ 300
$$

$$
H P \text { cost }=£ 60+£ 300=£ 360
$$

(ii) basic pay $£ 118.40$ a week plus 12.5% commission on sales over £2000.
Weekly sales of $£ 4200$ were achieved.

$$
\begin{aligned}
\text { extra sales } & =£ 4200-£ 2000=£ 2200 \\
\text { commission } & =£ 2200 \div 100 \times 12 \cdot 5=£ 275
\end{aligned}
$$

$$
\text { gross pay }=£ 118 \cdot 40+£ 275=£ 393 \cdot 40
$$

(3) VAT

Radio costs $£ 60$ excluding VAT at 20%. Find the cost inclusive of VAT.

$$
\begin{aligned}
V A T & =£ 60 \div 100 \times 20=£ 12 \\
\text { cost } & =£ 60+£ 12=£ 72
\end{aligned}
$$

(5) foreign exchange

Exchange rate is $\$ 1.50$ to the $£$.
Change: (i) $£ 30$ to $\$$
(ii) $\$ 60$ to $£$
(i) $£ 30 \times 1 \cdot 50=\$ 45$
(ii) $\$ 60 \div 1 \cdot 50=£ 40$

CHAPTER 5: POSITIVE AND NEGATIVE NUMBERS
 (DIRECTED NUMBERS)

ADD AND SUBTRACT

$$
-7+3=-4
$$

$$
-2+5=3
$$

add negative $=$ subtract

$$
\text { subtract negative }=\text { add }
$$

$$
a+(-b)=a-b
$$

For example,

$$
\begin{aligned}
& -4+(-3) \\
= & -4-3 \\
= & -7
\end{aligned}
$$

$$
a-(-b)=a+b
$$

$$
\begin{aligned}
& 3+(-5) \\
= & 3-5 \\
= & -2
\end{aligned}
$$

$$
-7-(-3)
$$

$$
-2-(-5)
$$

$$
=-7+3
$$

$$
=-4
$$

CALCULATIONS

Examples:
If $a=-3, b=2$ and $c=5$, evaluate:
(1) $3 c-a b$
(2) $2 a^{2}$
(3) $\frac{a-b}{c}$
$3 \times c-a \times b$
$=3 \times 5-(-3) \times 2$
$2 \times a \times a$
$=2 \times(-3) \times(-3)$
$\frac{-3-2}{5}$
$=15-(-6)$
$=2 \times 9$
$=\frac{-5}{5}$
$=15+6$
$=18$

$$
=-1
$$

EQUATIONS

Examples:
(1) Solve: $5 x-4=2 x-19$

$$
\begin{aligned}
5 x-4 & =2 x-19 & & \\
3 x-4 & =-19 & & \text { subtracted } 2 x \text { from each side } \\
3 x & =-15 & & \text { added } 4 \text { to each side } \\
x & =-5 & & \text { divided each side by } 3
\end{aligned}
$$

(2) Solve: $2-5 t=10-3 t$

$$
\begin{aligned}
4-5 t & =10-3 t & & \\
4 & =10+2 t & & \text { added } 5 t \text { to each side } \\
-6 & =2 t & & \text { subtracted } 10 \text { from each side } \\
-3 & =t & & \text { divided each side by } 2
\end{aligned}
$$

CHAPTER 6: PYTHAGORAS' THEOREM

Squares sit on the sides of a triangle; the biggest square, area A_{1}, is opposite the biggest angle.

For right-angled triangles only:

$$
\mathrm{A}_{1}=\mathrm{A}_{2}+\mathrm{A}_{3}
$$

Side length a units is opposite the right angle. It is the longest side, the hypotenuse.

For right-angled triangles:

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}
$$

FINDING AN UNKNOWN SIDE

Examples:
(1) finding the longest side:

$$
\begin{aligned}
x^{2} & =10^{2}+8^{2} \\
& =100+64 \\
x^{2} & =164 \\
x & =\sqrt{164} \\
& =12 \cdot 806 \ldots \\
x & =12 \cdot 8
\end{aligned}
$$

(2) finding a short side:

$$
\begin{aligned}
y^{2} & =12^{2}-9^{2} \quad\left(\text { since } y^{2}+9^{2}=12^{2}\right) \\
& =144-81 \\
y^{2} & =63 \\
y & =\sqrt{63} \\
& =7 \cdot 937 \ldots \\
y & =7 \cdot 9
\end{aligned}
$$

CONVERSE OF PYTHAGORAS' THEOREM

Side length a units, opposite the biggest angle, is the longest side.
If
$a^{2}=b^{2}+c^{2}$
then
the triangle is right angled

Example:

Show that triangle ABC is right angled.

$$
\begin{aligned}
& A B^{2}+B C^{2}=8^{2}+6^{2}=100 \\
& A C^{2}=10^{2}=100
\end{aligned}
$$

since $A B^{2}+B C^{2}=A C^{2}$
by the Converse of Pyth. Thm.
$\triangle A B C$ is right angled at $B \quad\left(\right.$ ie. $\left.\angle A B C=90^{\circ}\right)$

CHAPTER 7: BRACKETS AND EQUATIONS

Examples:

SINGLE BRACKETS

Each term in the brackets is multiplied by the term outside the brackets.
(1) $3 x(2 x-y+7)$
(2) $-2(3 t+5)$
(3) $-3 w\left(w^{2}-4\right)$
$3 x \times 2 x=6 x^{2}$
$3 x \times-y=-3 x y$
$-2 \times 3 t=-6 t$
$-3 w \times w^{2}=-3 w^{3}$
$3 x \times+7=+21 x$
$-2 \times+5=-10$
$-3 w \times-4=+12 w$
$=6 x^{2}-3 x y+21 x$
$=-6 t-10$
$=-3 w^{3}+12 w$

Fully simplify:
(4) $2 \mathrm{t}(3-t)+5 t^{2}$
(5) $5-3(n-2)$
$=6 t-2 t^{2}+5 t^{2}$

$$
\begin{aligned}
& =5-3 n+6 \\
& =5+6-3 n \\
& =11-3 n
\end{aligned}
$$

DOUBLE BRACKETS

(1) $(3 x+2)(2 x-5)$

$$
\begin{aligned}
& (3 x+2)(2 x-5) \\
= & 3 x(2 x-5)+2(2 x-5) \\
= & 6 x^{2}-15 x+4 x-10 \\
= & 6 x^{2}-11 x-10
\end{aligned}
$$

or

"FOIL"

$$
\begin{aligned}
& =6 x^{2}-15 x+4 x-10 \\
& =6 x^{2}-11 x-10
\end{aligned}
$$

"FOIL" pairs multiplied between the two brackets.
$\overparen{(3 x+2)(2 x-5)}$

First $6 x^{2}$
Outer - $15 x$
$(3 x+2)(2 x-5)$
Inner $+4 x$
Last -10
(2) $(2 t-3)^{2}$
or

$$
\begin{aligned}
& (2 t-3)(2 t-3) \\
= & 2 t(2 t-3)-3(2 t-3) \\
= & 4 t^{2}-6 t-6 t+9 \\
= & 4 t^{2}-12 t+9
\end{aligned}
$$

$$
\begin{aligned}
& =4 t^{2}-6 t-6 t+9 \\
& =4 t^{2}-12 t+9
\end{aligned}
$$

(3) $(w+2)\left(w^{2}-3 w+5\right)$

$$
\begin{aligned}
& (w+2)\left(w^{2}-3 w+5\right) \\
= & w\left(w^{2}-3 w+5\right)+2\left(w^{2}-3 w+5\right) \\
= & w^{3}-3 w^{2}+5 w+2 w^{2}-6 w+10 \\
= & w^{3}-3 w^{2}+2 w^{2}+5 w-6 w+10 \\
= & w^{3}-w^{2}-w+10
\end{aligned}
$$

EQUATIONS

Remove the brackets, fully simplifying, then follow the rules for solving equations.
Example:
Solve: $(4 x+3)(x-2)=(2 x-3)^{2}$

$$
\begin{array}{rlrl}
4 x^{2}-5 x-6 & =4 x^{2}-12 x+9 & & \text { removed brackets, fully simplifying } \\
-5 x-6 & = & -12 x+9 & \\
7 x-6 & = & & \text { subtracted } 4 x^{2} \text { from each side } \\
7 x & = & & \text { added } 12 x \text { to each side } \\
x & =\frac{15}{7} & & \\
\text { added } 6 \text { to each side }
\end{array}
$$

CHAPTER 8: STATISTICS SUPPLEMENT

Studying statistical information, it is useful to consider: (1) typical result: average
(2) distribution of results: spread

AVERAGES:

$$
\begin{aligned}
\text { mean } & =\frac{\text { total of all results }}{\text { number of results }} \\
\text { median } & =\text { middle result of the ordered results } \\
\text { mode } & =\text { most frequent result }
\end{aligned}
$$

SPREAD:

Ordered results are split into 4 equal groups so each contains 25% of the results.
The 5 figure summary identifies: $L, Q_{1}, Q_{2}, Q_{3}, H$ (lowest result, 1st , 2nd and 3rd quartiles, highest result)

A Box Plot is a statistical diagram that displays the 5 figure summary:

$$
\text { range, } R=H-L
$$

interquartile range, $I Q R=Q_{3}-Q_{1}$
semi- interquartile range, $\operatorname{SIQR}=\frac{Q_{3}-Q_{1}}{2}$

NOTE: If Q_{1}, Q_{2} or Q_{3} fall between two results, the mean of the two results is taken.
For example,
12 ordered results: split into 4 equal groups of 3 results

$$
\begin{aligned}
& \begin{array}{lll:llllll}
& & Q_{1} & & Q_{2} & & Q_{3} \\
10 & 11 & 13 & 17 & 18 & 20 & 20 & 23 & 25
\end{array} 26 \\
& Q_{1}=\frac{13+17}{2}=15 \quad, \quad Q_{2}=\frac{20+20}{2}=20 \quad, \quad Q_{3}=\frac{25+26}{2}=25 \cdot 5
\end{aligned}
$$

Example:
Pulse rates: $66,64,71,56,60,79,77,75,69,73,75,62,66,71,66$ beats per minute.

15 ordered results:

5 Figure Summary:

$$
L=56 \quad, \quad Q_{1}=64 \quad, \quad Q_{2}=69 \quad, \quad Q_{3}=75 \quad, \quad H=79
$$

Box Plot:

Spread:

$$
\begin{aligned}
& R=H-L=79-56=23 \\
& I Q R=Q_{3}-Q_{1}=75-64=11 \\
& S I Q R=\frac{Q_{3}-Q_{1}}{2}=\frac{75-64}{2}=\frac{11}{2}=5 \cdot 5
\end{aligned}
$$

Averages: $\quad($ total $=66+64+71+\ldots+66=1030)$

$$
M E A N=\frac{1030}{15}=68 \cdot 666 \ldots=68 \cdot 7
$$

$\left(Q_{2}\right)$ MEDIAN $=69$

$$
M O D E=66
$$

OTHER STATISTICAL DIAGRAMS

Examples:

ordered stem-and-leaf:

Race Times (seconds):
$10 \cdot 4,10 \cdot 2,9 \cdot 9,12 \cdot 1,11 \cdot 7,10 \cdot 9,9 \cdot 9,11 \cdot 4,10 \cdot 6,11 \cdot 5,10 \cdot 1,9 \cdot 8,10 \cdot 2,11 \cdot 3,11 \cdot 0$

unordered first												
9	9	9	8			9	8	9	9			
10	4	2	9	6	1	2	10	1	2	2	4	6
11	7	4	5	3	0		11	0	3	4	5	7
12	1				12	1						
			n	$=15$	9	8	$=$	9.8				

dot plot:

Car speeds (mph):

FREQUENCY DISTRIBUTION TABLES

Useful for dealing with a large number of results.
In a competition 50 people take part. The table shows the distribution of points scored.
Scores (points)

result	frequency
10	4
11	5
12	9
13	12
14	10
15	7
16	3

mean:

result	frequency	result \times frequency
10	4	40
11	5	55
12	9	108
13	12	156
14	10	140
15	7	105
16	3	48
TOTALS	50	652

cummulative frequency:

CHAPTER 9: TRIGONOMETRY

SOH-CAH-TOA

Opposite: opposite the angle a°. Adjacent: next to the angle a°.
Hypotenuse: opposite the right angle.
The ratios of sides $\frac{\mathrm{O}}{\mathrm{H}}, \frac{\mathrm{A}}{\mathrm{H}}$ and $\frac{\mathrm{O}}{\mathrm{A}}$ have values which depend on the size of angle a°.
These are called the sine, cosine and tangents of a°, written $\sin \mathrm{a}^{\circ}, \cos \mathrm{a}^{\circ}$ and $\tan \mathrm{a}^{\circ}$.
For example,

$S=\frac{O}{H}$
$\sin a^{\circ}=\frac{3}{5}$
$C=\frac{A}{H}$
$T=\frac{O}{A}$
$\cos a^{\circ}=\frac{4}{5}$
$\tan a^{\circ}=\frac{3}{4}$

FINDING AN UNKNOWN SIDE

Examples:
(1) Find x.

$$
S=\frac{O}{H}
$$

know H, find O SƠ-CAH-TOA
sine ratio uses O and H

ensure calculator set to DEGREES
$x=10 \times \sin 40^{\circ}$
$=6 \cdot 427 \ldots$.
$x=6 \cdot 4$
(2) Find y.

$$
C=\frac{A}{H}
$$

know A, find H

cosine ratio uses A and H

$$
\begin{aligned}
y & =\frac{4}{\cos 55^{\circ}} \quad \begin{array}{c}
4 \div \cos 55^{\circ} \\
\text { calculator set } \\
\text { to DEGREES }
\end{array} \\
& =6 \cdot 973 \ldots \\
y & =7 \cdot 0
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

Example:

Find x.

$$
T=\frac{O}{A}
$$

tangent ratio uses O and A

$$
\begin{aligned}
\tan x^{\circ} & =\frac{9}{7} \\
x & =\tan ^{-1}\left(\frac{9}{7}\right) \quad \begin{array}{l}
\text { use brackets } \\
\text { for }(9 \div 7), \\
\text { calculator set } \\
\text { to DEGREES }
\end{array} \\
& =52 \cdot 125 \ldots \\
x & =52 \cdot 1
\end{aligned}
$$

CHAPTER 10: SIMULTANEOUS EQUATIONS

EQUATION OF A LINE

The equation gives a rule connecting the x and y coordinates of any point on the line.
For example,

$$
2 x+y=6
$$

sample points:
$(0,6)$
$x=0, y=6$
$2 \times 0+6=6$
$x=3, y=0$
$2 \times 3+0=6$
$(-2,10)$
$x=-2, y=10$
$2 \times(-2)+10=6$
$x=\frac{1}{2}, y=5$
$2 \times \frac{1}{2}+5=6$

Infinite points cannot be listed but can be shown as a graph.

SKETCHING STRAIGHT LINES

Show where the line meets the axes.
Example:
Sketch the graph with equation $3 x+2 y=12$.

$$
\begin{array}{rlrl}
3 x+2 y & =12 & \\
3 \times 0+2 y & =12 & \text { substituted for } x=0 \\
2 y & =12 & \\
y & =6 & & \text { plot }(0,6) \\
3 x+2 y & =12 & \\
3 x+2 \times 0 & =12 & \text { substituted for } y=0 \\
3 x & =12 & \\
x & =4 & & \text { plot }(4,0)
\end{array}
$$

SOLVE SIMULTANEOUS EQUATIONS: GRAPHICAL METHOD

Sketch the two lines and the point of intersection is the solution.
Example:
Solve graphically the system of equations: $y+2 x=8$

$$
y-x=2
$$

$$
\begin{align*}
y+2 x & =8 & & \tag{1}\\
y+2 \times 0 & =8 & & \text { substituted for } x=0 \tag{2}\\
y & =8 & & \text { plot }(0,8)
\end{align*}
$$

$$
\begin{array}{rll}
y+2 x & =8 & \\
0+2 x & =8 & \tag{2}\\
\text { substituted for } y=0 \\
2 x & =8 & \\
x & =4 & \\
\text { plot }(4,0)
\end{array}
$$

$$
\begin{aligned}
y-x & =2 & & \\
y-0 & =2 & & \text { substituted for } x=0 \\
y & =2 & & \operatorname{plot}(0,2)
\end{aligned}
$$

$$
\begin{aligned}
y-x & =2 \\
0-x & =2 \quad \text { substituted for } y=0 \\
-\mathrm{x} & =2 \\
\mathrm{x} & =-2 \quad \operatorname{plot}(-2,0)
\end{aligned}
$$

point of intersection $(2,4)$

CHECK:
$x=2$ and $y=4$
substituted in both equations

$$
\begin{align*}
& y+2 x=8 \tag{1}\\
& y-x=2 \tag{2}\\
& 4+2 \times 2=8 \\
& 8=8 \\
& 4-2=2 \\
& 2=2
\end{align*}
$$

SOLUTION:
$x=2$ and $y=4$

SOLVE SIMULTANEOUS EQUATIONS: SUBSTITUTION METHOD

Rearrange both equations to $y=$ and equate the two equations.

$$
(\text { or } x=)
$$

Example:
Solve algebraically the system of equations: $y+2 x=8$

$$
y-x=2
$$

$$
\begin{align*}
y+2 x & =8 \tag{1}\\
y & =8-2 x
\end{align*}
$$

$$
\begin{align*}
y-x & =2 \tag{2}\\
y & =x+2
\end{align*}
$$

$x+2=8-2 x$
$3 x+2=8$
$3 x=6$

$$
x=2
$$

$$
\begin{align*}
y & =x+2 \tag{2}\\
& =2+2 \\
y & =4
\end{align*}
$$

CHECK:

$$
\begin{aligned}
y+2 x & =8 & \text { (1) } & \\
4+2 \times 2 & =8 & & \text { using the other equation } \\
8 & =8 & & \text { substituted for } x=2 \text { and } y=4
\end{aligned}
$$

SOLUTION:

$$
x=2 \text { and } y=4
$$

can choose to rearrange to $y=$ or $x=$ choosing $y=$ avoids fractions as $x=4-\frac{1}{2} y$
rearrange for $y=$
y terms equal
can choose either equation (1) or (2)
substituted for $x=2$

Can add or subtract multiples of the equations to eliminate either the x or y term.
Example:
Solve algebraically the system of equations: $4 x+3 y=5$

$$
5 x-2 y=12
$$

$\begin{aligned} 4 x+3 y & =5 \\ 5 x-2 y & =12 \end{aligned}$	$\begin{aligned} & \text { (1) } \times 2 \\ & \text { (2) } \times 3 \end{aligned}$	can choose to eliminate x or y term choosing y term, LCM $(3 y, 2 y)=6 y$ (least common multiple)
$8 x+6 y=10$	(3)	multiplied each term of (1) by 2 for $+6 y$
$15 x-6 y=36$	(4)	multiplied each term of (2) by 3 for - 69
$23 x+0=46$	(3) + (4)	added "like" terms,
$x=2$		$+6 y$ and $-6 y$ added to 0 (ie eliminated)
$4 x+3 y=5$	(1)	can choose either equation (1) or (2)
$4 \times 2+3 y=5$		substituted for $x=2$
$8+3 y=5$		
$3 y=-3$		
$y=-1$		

CHECK:

$5 x-2 y=12$
$5 \times 2-2 \times(-1)=12$
$10-(-2)=12$
$12=12$

SOLUTION:
$x=2$ and $y=-1$
using the other equation
substituted for $x=2$ and $y=-1$

CHAPTER 11: AREAS AND VOLUMES

FORMULAE:

triangles $A=\frac{1}{2} b h$

kites (incudes the rhombus)
$A=\frac{1}{2}$ the product of the diagonals

$A=l b$

$A=b h$

$A=\frac{1}{2} h(a+b)$

Prism: a solid with the same cross-section throughout its length.
Length \boldsymbol{l} is at right-angles to the area \boldsymbol{A}.

AREA AND PERIMETER

Example:
Calculate: (1) the area
(2) the perimeter

Split the shape into known shapes.
(1)

$$
\begin{array}{rlrl}
A & =l b & A & =\frac{1}{4} \pi r^{2} \\
& =10 \times 6 & & =\pi \times 6 \times 6 \div 4 \\
& =60 \mathrm{~cm}^{2} & & =28 \cdot 274 \ldots \mathrm{~cm}^{2}
\end{array}
$$

$$
r=16 \mathrm{~cm}-10 \mathrm{~cm}=6 \mathrm{~cm}
$$

total area $=60+28 \cdot 274 \ldots=88 \cdot 274 \ldots=88 \cdot 3 \mathrm{~cm}^{2}$
(2)

perimeter $=10+6+16+9 \cdot 424 \ldots=41 \cdot 424 \ldots=41 \cdot 4 \mathrm{~cm}$

VOLUMES

Examples:
(1) Calculate the volume

$$
\begin{aligned}
& \text { radius }=8 \mathrm{~cm} \div 2=4 \mathrm{~cm} \\
& \qquad \begin{aligned}
V & =\pi r^{2} h \\
& =\pi \times 4 \times 4 \times 14 \\
& =703 \cdot 716 \ldots \\
& =703 \cdot 7 \mathrm{~cm}^{3} \\
& (\text { exact answer } 224 \pi)
\end{aligned}
\end{aligned}
$$

(2) Calculate the volume

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =10 \times 8 \div 2 \\
& =40 \mathrm{~cm}^{2} \\
V & =A l \\
& =40 \times 20 \\
& =800 \mathrm{~cm}^{3}
\end{aligned}
$$

(3) Calculate the volume

$$
\begin{aligned}
4 & =\frac{1}{2} h(a+b) \\
& =10 \times(8+12) \div 2 \\
& =10 \times 20 \div 2 \\
& =100 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
V & =A l \\
& =100 \times 30 \\
& =3000 \mathrm{~cm}^{3}
\end{aligned}
$$

CYLINDER:

Examples:
(1) Calculate the total surface area.

$$
\begin{array}{rlrl}
A & =\pi d h+2 \pi r^{2} & \\
& =\pi \times 12 \times 10+2 \times \pi \times 6 \times 6 \\
& =376 \cdot 991 \ldots+226 \cdot 194 \ldots & \text { or } \quad & \\
& =603 \cdot 185 \ldots \pi+72 \pi \\
& =603 \mathrm{~cm}^{2} & & =192 \pi \mathrm{~cm}^{2} \\
& \quad \text { (exact answer) }
\end{array}
$$

triangular prism

(2) Calculate the total surface area.

triangles

$$
\begin{array}{rlrlrl}
A & =\frac{1}{2} b h & A & =l b & A & =l b \\
& =12 \times 8 \div 2 & & =10 \times 20 & & =12 \times 20 \\
& =48 \mathrm{~cm}^{2} & & =200 \mathrm{~cm}^{2} & =240 \mathrm{~cm}^{2}
\end{array}
$$

total area $=2 \times 48+2 \times 200+240=736 \mathrm{~cm}^{2}$

CHAPTER 12: FACTORSATION

COMMON FACTORS

Factors: divide into a number without a remainder. Factors of a number come in pairs. For example,

$$
\begin{aligned}
12 & =1 \times 12=2 \times 6=3 \times 4 & & \text { factors of } 12 \text { are } 1,2,3,4,6,12 \\
18 & =1 \times 18=2 \times 9=3 \times 6 & & \text { factors of } 18 \text { are } 1,2,3,6,9,18 \\
4 a & =1 \times 4 a=2 \times 2 a=4 \times a & & \text { factors of } 4 a \text { are } 1,2,4, a, 2 a, 4 a \\
2 a^{2} & =1 \times 2 a^{2}=2 \times a^{2}=a \times 2 a & & \text { factors of } 2 a^{2} \text { are } 1,2, a, 2 a, a^{2}, 2 a^{2}
\end{aligned}
$$

Highest Common Factor(HCF): the highest factors numbers share.
For example,
from the above lists of factors: $\quad \operatorname{HCF}(12,18)=6 \quad \operatorname{HCF}\left(4 a, 2 a^{2}\right)=2 a$

Factorisation: HCFs are used to write expressions in fully factorised form.
Examples:
Factorise fully:
(1) $12 x+18 y$
(2) $4 a-2 a^{2}$
$6 \times 2 x+6 \times 3 y$ using $\operatorname{HCF}(12,18)=6$
$2 a \times 2-2 a \times a$ using $\operatorname{HCF}\left(4 a, 2 a^{2}\right)=2 a$
$=6(2 x+3 y)$
$=2 a(2-a)$

NOTE: the following answers are factorised but not fully factorised:

$$
\begin{array}{ll}
2(6 x+9 y) & 2\left(2 a-a^{2}\right) \\
3(4 x+6 y) & a(4-2 a)
\end{array}
$$

DIFFERENCE OF TWO SQUARES

Rule: $\quad a^{2}-b^{2}=(a+b)(a-b)$ check: $(a+b)(a-b)=a(a-b)+b(a-b)=a^{2}-a b+a b-b^{2}=a^{2}-b^{2}$

Examples:
Factorise fully:
(1) $4 x^{2}-9$
(2) $t^{2}-1$
(3) $n^{4}-1$
$=(2 x)^{2}-3^{2}$
$=t^{2}-1^{2}$
$=\left(n^{2}\right)^{2}-1^{2}$
$=(2 x+3)(2 x-3)$
$=(t+1)(t-1)$
$=\left(n^{2}+1\right)\left(n^{2}-1\right)$
$=\left(n^{2}+1\right)(n+1)(n-1)$
common factor first
(4) $8 x^{2}-18$
(5) $t^{3}-t$
$=2\left(4 x^{2}-9\right)$
$=t\left(t^{2}-1\right)$
$=2(2 x+3)(2 x-3)$
$=t(t+1)(t-1)$

TRINOMIALS $a x^{2}+b x+c, a=1 \quad$ ie. $1 x^{2}$
(Quadratic Expressions)
$a x^{2}+b x+c=(x+?)(x+?) \quad$ The missing numbers: are a pair of factors of c sum to b
Examples:
Factorise fully:
(1) $x^{2}+5 x+6$
(2) $x^{2}-5 x+6$
(3) $x^{2}-5 x-6$
$1 \times 6=2 \times 3=6$
$2+3=5$

$$
-1,-6 \text { or }-2,-3
$$

$$
-1,6 \text { or } 1,-6 \text { or }-2,3 \text { or } 2,-3
$$

$$
-2+(-3)=-5
$$

$$
1+(-6)=-5
$$

use +2 and +3
use -2 and -3 use +1 and - 6
$=(x+2)(x+3)$
$=(x-2)(x-3)$
$=(x+1)(x-6)$

TRINOMIALS $a x^{2}+b x+c, a \neq 1$
Carry out a procedure which is a reversal of bracket breaking.
Examples:
(1) factorise $2 t^{2}+7 t+6$

$2 t^{2}+7 \mathbf{t}+6$
$=2 t^{2}+\mathbf{4 t}+\mathbf{3 t}+6 \quad$ replace $+7 t$ by $+4 t+3 t \quad(o r+3 t+4 t)$
$=\left(2 t^{2}+4 t\right)+(3 t+6) \quad$ bracket first and last pairs of terms
$=2 t(\mathbf{t}+\mathbf{2})+3(\mathbf{t}+\mathbf{2}) \quad$ factorise each bracket using HCF
$=(2 t+3)(\mathbf{t}+2) \quad$ factorise: brackets are common factor
(2) factorise $2 t^{2}-7 t+6$ Watch! Take care with negative signs outside brackets.

	$2 \times 6=12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{3+4=7}$
	$2 t^{2}-\mathbf{7} \mathbf{t}+6$
$=$	$2 t^{2}-\mathbf{4} \mathbf{t}-\mathbf{3 t}+6 \quad$ replace $-7 t$ by $-4 t-3 t \quad($ or $-3 t-4 t)$
$=$	$\left(2 t^{2}-4 t\right)-(3 t-6) \quad$ notice sign change in 2 nd bracket,+6 to -6
$=$	$2 t(\mathbf{t}-\mathbf{2})-3(\mathbf{t}-\mathbf{2})$
$=$	$(2 t-3)(\mathbf{t}-\mathbf{2})$

(3) factorise $2 t^{2}-11 t-6$

ALTERNATIVE METHOD:

Try out the possible combinations of the factors which could be in the brackets.
Examples: same quadratic expressions as the previous page.
(1) factorise $2 t^{2}+7 t+6$
$2 \times 6=12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{3+4=7}$
$2 t^{2}+\underline{\underline{7}}+6$ try combinations so that $3 t$ and $4 t$ are obtained
factors of $2 t^{2}: 2 t, t$
factors of 6: 1,6 or 2,3

$2 t^{2}+7 t+6$ has no common factor.
These have so can be ruled out

$3 t$

$$
(2 t+3)(t+2)
$$

(2) factorise $2 t^{2}-7 t+6$
exactly as example (1) except $-7 t$ requires both negative, so -3 , -2
(3) factorise $2 t^{2}-11 t-6$
$2 \times(-6)=-12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{-12+1=-11}$ one factor is negative

$1 t \quad-12 t /$
$(2 \mathrm{t}+1)(\mathrm{t}-6)$

$2 t^{2}-11 t-6$ has no common factor. These have so can be ruled out

$3 t$

CHAPTER 13: PERSONAL FINANCE

PERCENTAGE CHANGE

original	changed
value	value

INCREASE: growth, appreciation, compound interest
DECREASE: decay, depreciation
value value
$100 \% \xrightarrow{+a \%}(100+a) \%$
$100 \% \xrightarrow{-a \%}(100-a) \%$

For example,
8% increase: $100 \% \xrightarrow{+8 \%} 108 \%=1 \cdot 08$ multiply quantity by $1 \cdot 08$ for 8% increase 8% decrease $: 100 \% \xrightarrow{-8 \%} 92 \%=0.92$ multiply quantity by 0.92 for 8% decrease

Examples:

APPRECIATION AND DEPRECIATION

(1) A $£ 240000$ house appreciates in value by 5% in 2007, appreciates 10% in 2008 and depreciates by 15% in 2009. Calculate the value of the house at the end of 2009.
or evaluate year by year
year 1
5% increase: $100 \%+5 \%=105 \%=1 \cdot 05$
10% increase $: 100 \%+10 \%=110 \%=1 \cdot 10$
15% decrease $: 100 \%-15 \%=085 \%=0 \cdot 85$

$$
£ 240000 \times 1 \cdot 05 \times 1 \cdot 10 \times 0 \cdot 85
$$

$=£ 235620$

$$
\begin{aligned}
& 5 \% \times £ 240000=£ 12000 \\
& £ 240000+£ 12000=£ 25200 \\
& \text { year } 2 \\
& 10 \% \text { of } £ 252000=£ 25200 \\
& £ 252000+£ 25200=£ 277200 \\
& \text { year } 3 \\
& 15 \% \text { of } £ 277200=£ 41580 \\
& £ 277200-£ 41580=£ 235620
\end{aligned}
$$

COMPOUND INTEREST

(2) Calculate the compound interest on $£ 12000$ invested at 5% pa for 3 years.

$$
\begin{aligned}
& £ 12000 \times(1 \cdot 05)^{3} \quad \text { ie. } \times 1 \cdot 05 \times 1 \cdot 05 \times 1 \cdot 05 \quad \text { or evaluate year by year } \\
& £ 12000 \times 1 \cdot 157625 \\
&= £ 13891 \cdot 50 \\
& \text { compound interest }=£ 13891 \cdot 50-£ 12000=£ 1891 \cdot 50
\end{aligned}
$$

INCOME TAX

Tax is paid on taxable income, gross annual income less allowances.
Example:
Tom earns $£ 28800$ a year and after allowances of $£ 6300$ he will pay tax at 20%. Calculate his income after tax.

$$
\begin{aligned}
20 \% \text { tax subtracted } & \text { taxable income }
\end{aligned}=£ 28800-£ 6300=£ 22500
$$

REVERSING PERCENTAGE CHANGE

Divide by the factor which produced the increase.
Examples:
(1) Including VAT of 20%, a radio costs $£ 96$. Find the original cost exclusive of VAT.

$$
\begin{aligned}
& 20 \% \text { VAT added } \\
& 100 \% \xrightarrow{+20 \%} 120 \%=1 \cdot 20
\end{aligned}
$$

$$
\begin{aligned}
£ x \times 1 \cdot 20 & =£ 96 \\
£ x & =£ 96 \div 1 \cdot 20 \\
& =£ 80
\end{aligned}
$$

(2) A camera costs $£ 120$ after a discount of 25% is applied. Find the original cost.

25\% discount subtracted

$$
100 \% \xrightarrow{-25 \%} 075 \%=0 \cdot 75
$$

$$
\begin{aligned}
£ x \times 0 \cdot 75 & =£ 120 \\
£ x & =£ 120 \div 0 \cdot 75 \\
& =£ 160
\end{aligned}
$$

CHAPTER 14: FORMULAE

TRANSPOSING FORMULAE (CHANGE OF SUBJECT)

Follow the rules for equations to isolate the target term and then the target letter. (has target letter)

addition and subtraction

$$
x+a=b
$$

subtract a from each side

$$
x=b-a
$$

$$
x-a=b
$$

add a to each side

$$
x=b+a
$$

multiplication and division

$$
\frac{x}{a}=b
$$

multiply each side by a

$$
x=a b
$$

powers and roots

$$
x^{2}=a
$$

square root each side

$$
x=\sqrt{a}
$$

$$
a x=b
$$

divide each side by a

$$
x=\frac{b}{a}
$$

$$
\sqrt{x}=a
$$

square each side

$$
x=a^{2}
$$

Examples:
Change the subject of the formula to r :
(1) $F=3 r^{2}+p$
(2) $W=\frac{\sqrt{r}-n}{t}$
subtract p from each side
$F-p=3 r^{2}$
divide each side by 3
$\frac{F-p}{3}=r^{2}$
square root both sides
$\sqrt{\frac{F-p}{3}}=r$
subject of formula now r

$$
r=\sqrt{\frac{F-p}{3}}
$$

multiply both sides by t

$$
W t=\sqrt{r}-n
$$

add n to both side
$W t+n=\sqrt{r}$
square both sides

$$
(W t+n)^{2}=r
$$

subject of formula now r

$$
r=(W t+n)^{2}
$$

If the target term is negative , rearrange to the other side so it is positive If the target term is in brackets, break the brackets
If there are two target terms, gather the target terms and factorise for the target letter.
(3) $g=a(v-a r)$
break the brackets
$g=a v-a^{2} r$
add $a^{2} r$ to each side
$g+a^{2} r=a v$
subtract g from each side

$$
a^{2} r=a v-g
$$

divide both sides by a^{2}

$$
r=\frac{a v-g}{a^{2}}
$$

(4) $h=\frac{\pi r+t}{r}$
multiply both sides by r $h r=\pi r+t$
subtract πr from each side

$$
h r-\pi r=t
$$

factorise for r

$$
r(h-\pi)=t
$$

divide both sides by $(h-\pi)$
$r=\frac{t}{(h-\pi)} \quad$ brackets not needed

EFFECT OF CHANGE

Examples:
(1) The volume of a cylinder is given by

$$
V=\pi r^{2} h
$$

Describe the effect on volume of:
(i) doubling h
(ii) trebling r

$$
\begin{aligned}
V & =\pi(3 r)^{2} h \\
& =\pi 9 r^{2} h \\
& =9 \pi r^{2} h
\end{aligned}
$$

2 times bigger
9 times bigger
(2) The length of a prism is given by

$$
l=\frac{V}{A}
$$

Describe is the effect on length of:
(i) doubling V
(ii) trebling A

$$
\begin{aligned}
l & =\frac{V}{A} & l & =\frac{V}{A} \\
& =\frac{2 V}{A} & & =\frac{V}{3 A} \\
& =2 \frac{V}{A} & & =\frac{1}{3} \frac{V}{A} \\
& 2 \text { times bigger } & & \frac{1}{3} \text { of size }
\end{aligned}
$$

CONSTRUCTING FORMULAE

An arithmetic process can be generalised using letters to represent quantities. Examples:
(1)

CAR HIRE CHARGES		
minimum charge:	£20 per day	
mileage charge:	first 200 miles over 200 miles	no charge each additional mile 20p

(a) Find the cost of hiring a car for 6 days and travelling a distance 500 miles.
(b) A car is hired for days and the mileage is n miles where $n>200$.

Write a formula for the cost $£ \mathrm{C}$ of hiring the car.
(a) The calculations are set out carefully for each stage.
minimum charge $(£): \mathbf{6} \times 20=120$ note 20 p is $£ 0 \cdot 20$
mileage charge $(£): \mathbf{5 0 0}-200=300 \quad 300 \times 0 \cdot 20=60$
total cost: $\quad £ C=£ 120+£ 60=£ 180$
(b) The appropriate letters can replace the numbers.
minimum charge $(\mathfrak{f}): \mathbf{d} \times 20=20 d$
mileage charge $(£): \quad \mathbf{n}-200 \quad(n-200) \times 0 \cdot 20=0 \cdot 2(n-200)$
total $\operatorname{cost}(£), \quad C=20 d+0 \cdot 2(n-200)$
(2) Odd numbers starting with 3 are added. Generalise for adding n odd numbers.

CHAPTER 15: PROBABILITY

The probability of an event A occuring is $\quad \mathrm{P}(\mathrm{A})=\frac{\text { number of outcomes involving A }}{\text { total number of outcomes possible }}$
Always $0 \leq \mathrm{P} \leq 1$ and $\mathrm{P}=0$ impossible to occur , $\mathrm{P}=1$ certain to occur

$$
\mathrm{P}(\operatorname{not} \mathrm{~A})=1-\mathrm{P}(\mathrm{~A})
$$

number of expected outcomes $=$ number of trials $\times P(\mathrm{~A})$ involving event A

For example,
In a game, scores from two spinners are added together. The possible totals are shown.

SPINNER 1

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11

3 ways out of 30 to score a total of $9, P(9)=\frac{3}{30}=\frac{1}{10}$
27 ways to score a total which is not 9 ,

$$
P(\text { not } 9)=\frac{27}{30}=\frac{9}{10} \quad \text { or } \quad P(\text { not } 9)=1-P(9)=1-\frac{1}{10}=\frac{9}{10}
$$

cannot score 12 ,

$$
P(12)=0
$$

must score less than 12

$$
P(<12)=1
$$

spin the pair of spinners 60 times,
number of 9 s expected $=$ number of trials $\times P(9)$

$$
\begin{aligned}
& =60 \times \frac{1}{10} \\
& =6
\end{aligned}
$$

