20/12/17
 Unit 2 : Applications of Calculus - Lesson 1

Rectilinear Motion

LI

- Solve problems involving motion in a straight line.

SC

- Differentiation.
- Integration.

Rectilinear means in a straight line

The displacement (denoted variously by x, s, or r) of a particle is its position from the origin of a coordinate system

The velocity (denoted by v) of a particle is the time-derivative of the particle's displacement:

$$
v=\frac{d x}{d t}=\dot{x}
$$

The acceleration (denoted by a) of a particle is the time-derivative of the particle's velocity :

$$
a=\frac{d v}{d t}=\dot{v}
$$

Unless otherwise stated, the following units are assumed :

- Displacement - metres (m).
- Velocity - metres per second ($\mathrm{m} \mathrm{s}^{-1}$).
- Acceleration - metres per second squared ($\mathrm{m} \mathrm{s}^{-2}$).

Connections Between Displacement, Velocity and Acceleration

$$
\begin{aligned}
& \text { Useful Terminology } \\
& \text { Constant - unchanging } \\
& \text { At rest - velocity }=0 \\
& \text { Initially - time starts at } 0 \\
& \text { At origin - displacement }=0
\end{aligned}
$$

Unless otherwise stated, a particle will be assumed to commence its motion from the origin at $t=0$

Example 1

A particle has velocity $v(t)=3 t^{2}-4 t$. Initially, the particle has a displacement of -3 m from the origin of the coordinate system.

Calculate the particle's:
(a) displacement at time 4 s .
(b) displacement from the origin at $t=1 \mathrm{~s}$.
(c) acceleration at $t=2 / 3 \mathrm{~s}$.
(a) $\quad r(t)=\int v(t) d t$

$$
\begin{array}{ll}
\therefore & r(t)=\int\left(3 t^{2}-4 t\right) d t \\
\Rightarrow & r(t)=t^{3}-2 t^{2}+c \\
& r(0)=-3 \text { gives, }
\end{array}
$$

$$
\begin{array}{ll}
& -3=0^{3}-2(0)^{2}+c \\
\Rightarrow & C=-3 \\
\therefore & \\
\therefore & r(t)=t^{3}-2 t^{2}-3 \\
\Rightarrow & r(4)=4^{3}-2(4)^{2}-3 \\
\Rightarrow & r(4)=29 m
\end{array}
$$

(b) $\quad r(1)=1^{3}-2(1)^{2}-3$

$$
\Rightarrow \quad r(1)=-4 m
$$

(c) $\quad a(t)=\frac{d}{d t} v(t)$
$\Rightarrow \quad a(t)=\frac{d}{d t}\left(3 t^{2}-4 t\right)$
$\Rightarrow \quad \underline{a(t)=6 t-4}$
$\therefore \quad a(2 / 3)=6(2 / 3)-4$
$\Rightarrow \quad a(2 / 3)=0 \mathrm{~ms}^{-2}$

Example 2
A particle has acceleration $a(t)=\sin 2 t$. Initially, the particle is at rest at the origin of the coordinate system.

Calculate the:
(a) particle's velocity at time $\pi / 2 \mathrm{~s}$.
(b) particle's displacement from the origin at $t=\pi / 2 \mathrm{~s}$.
(c) times at which the acceleration is zero.
(a)
(b) $\quad r(t)=\int v(t) d t$

$$
\therefore \quad r(t)=\int(1 / 2-1 / 2 \cos 2 t) d t
$$

$$
\Rightarrow \quad r(t)=t / 2-1 / 4 \sin 2 t+D
$$

$$
r(0)=0 \text { gives, }
$$

$$
\begin{array}{ll}
& 0=0 / 2-1 / 4(0)+D \\
\Rightarrow & D=0 \\
\therefore & r(t)=t / 2-1 / 4 \sin 2 t \\
\therefore & r(\pi / 2)=\pi / 4-1 / 4 \sin \pi \\
\Rightarrow & r(\pi / 2)=\pi / 4 m
\end{array}
$$

(c)

$$
a(t)=0
$$

$$
\begin{array}{lll}
\therefore & \sin 2 t=0 \\
\Rightarrow & & t=(n \pi / 2) s \quad(n=0,1,2,3, \ldots)
\end{array}
$$

$$
\begin{aligned}
& v(t)=\int a(t) d t \\
& \therefore \quad v(t)=\int \sin 2 t d t \\
& \Rightarrow \quad v(t)=-1 / 2 \cos 2 t+C \\
& v(0)=0 \text { gives, } \\
& 0=-1 / 2(1)+C \\
& \Rightarrow \quad C=1 / 2 \\
& \therefore \quad v(t)=1 / 2-1 / 2 \cos 2 t \\
& \therefore \quad v(\pi / 2)=1 / 2-1 / 2 \cos \pi \\
& \Rightarrow \quad v(\pi / 2)=1 \mathrm{~ms}^{-1}
\end{aligned}
$$

Example 3

A particle has displacement governed by the equation $s(t)=t^{3}-9 t^{2}+15 t-2$.

When is the velocity decreasing?

$$
\begin{array}{ll}
& v(t)=\frac{d}{d t} s(t) \\
\Rightarrow \quad & v(t)=\frac{d}{d t}\left(t^{3}-9 t^{2}+15 t-2\right) \\
\Rightarrow \quad & v(t)=3 t^{2}-18 t+15
\end{array}
$$

The velocity is decreasing when $\frac{d}{d t} v(t)$ is negative, i.e. when the acceleration is negative.

$$
\begin{array}{cc}
& a(t)=\frac{d}{d t} v(t) \\
\Rightarrow & \\
\Rightarrow & a(t)=\frac{d}{d t}\left(3 t^{2}-18 t+15\right) \\
& \\
& a(t)=6 t-18 \\
\Rightarrow & 6 t-18<0 \\
\Rightarrow & \\
\Rightarrow & \\
& \\
& \\
& \\
& \\
& t<3<18
\end{array}
$$

Ex. 11.1

1 Given that particles are moving in a straight line according to the equations given below, calculate for each the velocity and acceleration
i after t seconds ii after 3 s .
a $x=3 t^{2}+t+1$
b $x=\frac{2 t}{t+1}$
c $x=\sqrt{5 t+1}$
d $x=t+e^{3-t}$
e $\quad x=2 \sqrt{2} \sin \frac{\pi}{12} t$
f $x=t+\frac{1}{t}$

2 The movement of particles can be modelled by the equations below.
Find the displacement and the acceleration the moment each particle comes to rest for the first time $(v=0)$.
a $x=180 t-3 t^{2}$
3 A particle is moving in a straight line. Its velocity can be calculated from $v(t)=3 t^{2}+1$ where t is the time in seconds. Initially the particle is 3 m from the origin.
a Find an expression for $x(t)$, the displacement of the particle at time t.
4 A particle is moving so that the acceleration in ms^{-2} is modelled by $a=3 \sin 2 t$ where t is the time in seconds since observations began.
Initially the particle is at rest and 1 m from the origin.
[That is, at $t=0, v=0$ and $s=1$.]
a Find an expression for
i the velocity at time $t \quad$ ii the displacement at time t.
b Calculate the displacement, velocity and acceleration of the particle when t is $\frac{\pi}{4} \mathrm{~s}$.
5 The equation of motion of a particle is $x=t^{2}-\sin t$.
a Show that the particle is always accelerating.
11 The height, s metres, reached in t seconds by a body thrown vertically upwards with initial velocity $v_{0} \mathrm{~ms}^{-1}$ is given by the formula $s=v_{0} t-\frac{1}{2} g t^{2}$ where g is the acceleration due to gravity.
Find an expression for
a v_{t}, the velocity at time t
b the times when $s=0 \mathrm{~m}$
c the time when the body reaches its maximum height
d the maximum height.
14 A particle, starting from rest, proceeds in a straight line. Its acceleration after t seconds is given by $a=4 \sec ^{2} t$ unit s $^{-2}$ where $0 \leq t \leq 1$. Calculate the velocity after 0.5 s and the distance travelled after $\frac{\pi}{4} \mathrm{~s}$.

Answers to AH Maths (MiA), pg. 187-9, Ex. 11.1

$$
\begin{aligned}
& 1 \text { a } \mathrm{i} \dot{x}=6 t+1 ; \ddot{x}=6 \\
& \text { ii } 19 \mathrm{~ms}^{-1} ; 6 \mathrm{~ms}^{-2} \\
& \text { b i } \quad \dot{x}=\frac{2}{(t+1)^{2}} ; \ddot{x}=\frac{-4}{(t+1)^{3}} \\
& \text { ii } \frac{1}{8} \mathrm{~ms}^{-1} ;-\frac{1}{16} \mathrm{~ms}^{-2} \\
& \text { c } \quad \mathrm{i} \quad \dot{x}=\frac{5}{2(5 t+1)^{\frac{1}{2}}} ; \ddot{x}=\frac{-25}{4(5 t+1)^{\frac{3}{2}}} \\
& \text { ii } \frac{5}{8} \mathrm{~ms}^{-1} ;-\frac{25}{256} \mathrm{~ms}^{-2} \\
& \text { d i } \dot{x}=1-e^{3-t} ; \ddot{x}=e^{3-t} \quad \text { ii } \quad 0 \mathrm{~ms}^{-1} ; 1 \mathrm{~ms}^{-2} \\
& \text { e } \quad \text { i } \quad \dot{x}=\frac{\sqrt{2} \pi}{6} \cos \left(\frac{\pi t}{12}\right) ; \ddot{x}=-\frac{\sqrt{2} \pi^{2}}{72} \sin \left(\frac{\pi t}{12}\right) \\
& \text { ii } \frac{\pi}{6} \mathrm{~ms}^{-1} ;-\frac{\pi^{2}}{72} \mathrm{~ms}^{-2} \\
& \text { f i } \quad \dot{x}=1-t^{-2} ; \ddot{x}=2 t^{-3} \quad \text { ii } \quad \frac{8}{9} \mathrm{~ms}^{-1} ; \frac{2}{27} \mathrm{~ms}^{-2} \\
& 2 \text { a } 2700 \mathrm{~m} ;-6 \mathrm{~ms}^{-2} \\
& 3 \text { a } x(t)=t^{3}+t+3 \\
& 4 \text { a i } \quad v=-\frac{3}{2} \cos 2 t+\frac{3}{2} \quad \text { ii } \quad x=-\frac{3}{4} \sin 2 t+\frac{3}{2} t+1 \\
& \text { b } \quad x=\left(\frac{1}{4}+\frac{3 \pi}{8}\right) \mathrm{m} ; v=\frac{3}{2} \mathrm{~ms}^{-1} ; a=3 \mathrm{~ms}^{-2} \\
& 5 \text { a } \quad x=t^{2}-\sin t \Rightarrow v=2 t-\cos t \Rightarrow a=2+\sin t \text {; } \\
& \text { since }-1 \leqslant \sin t \leqslant 1 \Rightarrow 1 \leqslant 2+\sin t \leqslant 3 \\
& \text { That is, acceleration always positive. } \\
& 11 \text { a } v=v_{0}-g t \\
& \text { b } t=0 ; t=\frac{2 v_{0}}{g} \\
& \text { c } \quad t_{\text {max }}=\frac{v_{0}}{g} \\
& \text { d } s_{\text {max }}=\frac{v_{0}{ }^{2}}{2 g} \\
& 14 \text { a } 2 \cdot 19 \mathrm{~m} / \mathrm{s} \\
& \text { b } \quad 1.39 \mathrm{~m}
\end{aligned}
$$

