Rationalising the Denominator 2

LI

- Rationalise a complicated denominator.

SC

- Conjugate surds.
- Expanding brackets.

Rationalising the denominator of a fraction means writing the fraction without a surd in the denominator (bottom)

Reminder

Multiplying numerator and denominator of a fraction by the same quantity does not change the fraction (because it's the same as multiplying the fraction by the number 1).

The conjugate of an expression with 2 terms is the expression obtained by changing the sign between the terms

Expression	Conjugate Expression
$x+y$	$x-y$
$-3 p+2$	$-3 p-2$

Surd Expression	Conjugate Surd Expression
$1+\sqrt{5}$	$1-\sqrt{5}$
$3-\sqrt{7}$	$3+\sqrt{7}$
$\sqrt{2}-7$	$\sqrt{2}+7$
$6+2 \sqrt{3}$	$6-2 \sqrt{3}$
$4 \sqrt{11}-9$	$4 \sqrt{11}+9$

A shorthand can be obtained for some surd calculations.
Multiplying brackets and simplifying the expression (or, applying a difference of 2 squares in reverse),

$$
(a-\sqrt{b})(a+\sqrt{b})
$$

gives,

$$
a^{2}-b
$$

More generally,

$$
\begin{aligned}
& (a-b \sqrt{c})(a+b \sqrt{c}) \\
= & a^{2}-b^{2} c
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& (3-\sqrt{7})(3+\sqrt{7}) \\
= & 9-7 \\
= & 2
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (5-2 \sqrt{3})(5+2 \sqrt{3}) \\
= & 5^{2}-2^{2}(3) \\
= & 25-12 \\
= & 13
\end{aligned}
$$

Rationalising a Complicated Denominator

A 'complicated' denominator is one that has a term of the form :

$$
a \pm b \sqrt{c}
$$

How to rationalise a complicated denominator :

- Multiply top and bottom of fraction by the conjugate surd expression in the bottom.
- Simplify fully any surds on the top; simplify fully any fractions.

Example 3
Rationalise:

$$
\left.\begin{array}{rl}
& \frac{1}{2-\sqrt{5}} \times(2+\sqrt{5})
\end{array}\right)(2+\sqrt{5})
$$

Example 4
Rationalise:

$$
\begin{aligned}
& \frac{1}{4+\sqrt{7}} \times(4-\sqrt{7}) \\
= & \frac{4-\sqrt{7})}{(4+\sqrt{7})(4-\sqrt{7})} \\
= & \frac{4-\sqrt{7}}{16-7} \\
= & \frac{4-\sqrt{7}}{9}
\end{aligned}
$$

Example 5

Rationalise:

$$
\begin{aligned}
& \frac{4}{6+\sqrt{3}} \times(6-\sqrt{3}) \\
= & \frac{4(6-\sqrt{3})}{(6+\sqrt{3})(6-\sqrt{3})} \\
= & \frac{4(6-\sqrt{3})}{36-3} \\
= & \frac{4(6-\sqrt{3})}{33}
\end{aligned}
$$

Example 6
Rationalise:

$$
\begin{aligned}
& \frac{1+\sqrt{5}}{2-\sqrt{3}} \times(2+\sqrt{3}) \\
= & \frac{(1+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})} \\
= & \frac{2+\sqrt{3}+2 \sqrt{5}+\sqrt{5} \sqrt{3}}{4-3} \\
= & 2+\sqrt{3}+2 \sqrt{5}+\sqrt{15}
\end{aligned}
$$

Questions

Rationalise the denominator.
a $\frac{1}{1-\sqrt{6}}$
b $\frac{1}{1+\sqrt{2}}$
c $\frac{1}{2-\sqrt{3}}$
d $\frac{3}{1-\sqrt{2}}$
e $\frac{7}{4+\sqrt{3}}$
f $\frac{8}{\sqrt{6}-\sqrt{2}}$
g $\frac{\sqrt{3}}{\sqrt{3}-6}$
h $\frac{1-\sqrt{2}}{1-\sqrt{3}}$
i $\frac{1+\sqrt{3}}{6+\sqrt{2}}$
j $\frac{5-\sqrt{2}}{\sqrt{3}-1}$
k $\frac{7}{2 \sqrt{3}-1}$
| $\frac{1}{3 \sqrt{7}+2}$
m $\frac{2 \sqrt{5}}{2 \sqrt{5}+1}$

| Answers |
| :---: | :---: | :---: | :--- |
| $\frac{-(1+\sqrt{6})}{5}$ b $-(1-\sqrt{2})$ c $2+\sqrt{3}$
 e $\frac{28-7 \sqrt{3}}{13}$ f $2 \sqrt{6}+2 \sqrt{2}$ g $\frac{-(1+2 \sqrt{3})}{11}$ d
 i $\frac{6-\sqrt{2}+6 \sqrt{3}-\sqrt{6}}{34}$ j $\frac{5 \sqrt{3}+5-\sqrt{6}-\sqrt{2}}{2}$ k $\frac{7(2 \sqrt{3}+1)}{11}$ h $\frac{\sqrt{2}+\sqrt{6}-\sqrt{3}-1}{2}$
 m $\frac{20-2 \sqrt{5}}{19}$ l $\frac{3 \sqrt{7}-2}{59}$ |

