Outcome 1

- 1. The points P, Q and R have coordinates (1, 3, -4), (5, 6, -3) and (13, 12, -1) respectively.
 - (i) Write down the components of \overrightarrow{PR} .
 - (ii) Hence show that P, Q and R are collinear.
- The point B divides \overrightarrow{AC} in the ratio 3:1 as shown in diagram 1. B

 Find the coordinates of B. Diagram 1

 A (1, 0, 2)
- 3 Diagram 2 shows vectors \overrightarrow{RS} and \overrightarrow{ST} where

$$\overrightarrow{RS} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \text{ and } \overrightarrow{ST} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}.$$

- (a) Find the value of $\overrightarrow{RS} \square \overrightarrow{ST}$.
- (b) Hence find the size of angle TRS.

Diagram 2

1

Outcome 2

4 (a) Given
$$y = \frac{1}{5}\sin x$$
, find $\frac{dy}{dx}$.

- (b) Differentiate $-6\cos x$, with respect to x.
- 5 Given $f(x) = (5x+6)^{-2}$ find f'(x).
- 6 (i) Find $\int 3\sin x \, dx$.
 - (ii) Integrate $-\frac{3}{5}\cos x$, with respect to x.
- 7 Evaluate $\int_{1}^{2} (x+2)^{3} dx$.

Outcome 3

- 8 (a) Simplify $\log_a 8 \log_a 2$.
 - (b) Simplify $3\log_4 2 + \log_4 8$.
- 9 Solve $e^x = 6.2$
- 10 Solve $\log_5(x+3) = 2$

Outcome 4

11 Express $2 \sin x^{\circ} - 4 \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$ where k > 0 and $0 \le a \le 360$.

End of assessment