Numeracy Booklex

North Bewwick Nigh School August 2011

CONTENTS

Rounding	Page
Addition	4
Subtraction	4
Multiplication	6
Division	7
Order of operations (BODMAS)	10
Formulae	12
Time	13
Fractions	14
Percentages	17
Ratio and Proportion	23
Information Handling - Frequency tables	25
Graphs	26
Mean, mode and median	27
Probability	28

ROUNDING

Rounding whole numbers
 Round:
 3654 to the nearest 10 \uparrow If the next digit is 5 or above we round up

$36 \underline{54}$ to the nearest 10 is 3650

- level 2

3654 to the nearest 100 is 3700 \uparrow
$\underline{3} 654$ to the nearest 1000 is 4000 \uparrow

Rounding decimals

Rounding to decimal places

$14 . \frac{6}{\uparrow} 78$ to 1 decimal place is 14.7
14.678 to 2 decimal places is 14.68

14.678 is between 14.67 and
14.68 - it is closer to 14.68
$27 . \underline{\uparrow} 48$ to 1 decimal place is 27.6
15.397 to 2 decimal places is 15.40 the zero must be included here

2456 to 2 significant figures is 2500 \uparrow

$\underline{\uparrow} \mathbf{3} 600$ to 1 significant figure is 30000
0.00268 to 2 significant figures is 0.0027 \uparrow
$0.000 \underline{9} 7$ to 1 significant figure is 0.001 \uparrow
0.00097 to 2 significant figures is 0.0010

ADDITION Level 2 onwards

Related words: Sum, total, plus

Mental methods

To find $36+45$

Method 1 add the tens and add the units
$30+40=70 \quad 6+5=11 \rightarrow 70+11=81$ so $36+45=81$

Method 2 add the tens then add the units
$36+40=76 \quad 76+5=81$ so $36+45=81$

Method 3 add the next ten then subtract (in this case add 50 then subtract 5)
$36+50=86 \quad 86-5=81$ so $36+45=81$

Written method

Example $1 \quad$ Find $286+57$
Estimate: $290+60=350$

Calculate: Start from the right hand side
Add the units \rightarrow add the tens \rightarrow add the hundreds \bigcirc

285
+57
2
1
:---:
+57
$\frac{42}{11}$
:---:
$\frac{342}{11}$
:---
answer as a check

Example 2 Find $46.2+85.75$

Estimate: $50+90=140$

Calculate:
46.20

Make the number of decimal places the same by adding a zero.
\qquad 131.95

SUBTRACTION Level 2 onwards

Related words: difference, take away, minus

Mental methods

Find 84-27

so $84-27=57$

Method 2

subtract tens subtract units

$$
\begin{aligned}
& 84-20=64 \\
& 64-7=57
\end{aligned}
$$

Method 3

subtract tens then add units
$84-30=54$
$54+3=57$

Written method

We use the decomposition method never 'borrow and pay back'!

Example 1 Find 2360-529

Estimate: 2400-500=1900

Calculate: Start from the right hand side

Subtract the units \rightarrow Subtract the tens \rightarrow Subtract the hundreds

Example 2 Find 752.0-87.9

Estimate: $750-90=660$

Calculate:

MULTIPLICATION Level 2 onwards

Mental methods

Knowledge of tables is very important, these need to be learned.

$1 \times$	$1=$	1
$1 \times 2=$	2	
$1 \times$	$3=$	3
$1 \times 4=$	4	
$1 \times 5=$	5	
$1 \times 6=$	6	
$1 \times 7=$	7	
$1 \times 8=$	8	
$1 \times 9=$	9	
$1 \times 10=$	10	

$2 \times$	$1=2$	
$2 \times$	$2=$	4
$2 \times$	$3=$	6
$2 \times$	$4=8$	
$2 \times$	$5=10$	
$2 \times$	$6=12$	
$2 \times$	$7=14$	
$2 \times$	$8=16$	
$2 \times$	$9=18$	
$2 \times 10=$	20	

$3 \times$	$1=$	3
$3 \times$	$2=$	6
$3 \times$	$3=$	9
$3 \times$	$4=12$	
$3 \times$	$5=15$	
$3 \times$	$6=18$	
$3 \times$	$7=21$	
$3 \times$	$8=24$	
$3 \times$	$9=27$	
$3 \times 10=$	30	

| $4 \times$ | $1=4$ |
| ---: | ---: | ---: |
| $4 \times$ | $2=8$ |
| $4 \times$ | $3=12$ |
| $4 \times$ | $4=16$ |
| $4 \times$ | $5=20$ |
| $4 \times$ | $6=24$ |
| $4 \times$ | $7=28$ |
| $4 \times$ | $8=32$ |
| $4 \times$ | $9=36$ |
| $4 \times 10=40$ | |

| $5 \times 1=$ | 5 |
| ---: | ---: | ---: |
| $5 \times 2=$ | 10 |
| $5 \times 3=$ | 15 |
| $5 \times 4=$ | 20 |
| $5 \times 5=$ | 25 |
| $5 \times 6=$ | 30 |
| $5 \times 7=$ | 35 |
| $5 \times 8=$ | 40 |
| $5 \times 9=$ | 45 |
| $5 \times 10=$ | 50 |

| $6 \times$ | $1=6$ |
| :--- | :--- | ---: |
| $6 \times$ | $2=12$ |
| $6 \times$ | $3=18$ |
| $6 \times$ | $4=24$ |
| $6 \times$ | $5=30$ |
| $6 \times$ | $6=36$ |
| $6 \times$ | $7=42$ |
| $6 \times$ | $8=48$ |
| $6 \times$ | $9=54$ |
| 6×10 | $=60$ |

$7 \times$	$1=7$	
$7 \times$	$2=$	14
$7 \times$	$3=21$	
$7 \times$	$4=28$	
$7 \times$	$5=35$	
$7 \times$	$6=42$	
$7 \times$	$7=49$	
$7 \times$	$8=56$	
$7 \times$	$9=63$	
$7 \times 10=70$		

$8 \times$	$1=8$
$8 \times$	$2=16$
$8 \times$	$3=24$
$8 \times$	$4=32$
$8 \times$	$5=40$
$8 \times$	$6=48$
$8 \times$	$7=56$
$8 \times$	$8=64$
$8 \times$	$9=72$
$8 \times 10=80$	

$9 \times$	$1=9$	
$9 \times$	$2=$	8
$9 \times$	$3=27$	
$9 \times$	$4=36$	
$9 \times$	$5=45$	
$9 \times$	$6=54$	
$9 \times$	$7=63$	
$9 \times$	$8=72$	
$9 \times$	$9=81$	
9×10	$=90$	

| $10 \times 1=$ | 10 |
| :--- | :--- | ---: |
| $10 \times 2=$ | 20 |
| $10 \times 3=$ | 30 |
| $10 \times 4=$ | 40 |
| $10 \times 5=$ | 50 |
| $10 \times 6=$ | 60 |
| $10 \times 7=$ | 70 |
| $10 \times 8=$ | 80 |
| $10 \times 9=$ | 90 |
| $10 \times 10=$ | 100 |

Find 58×3

Method 1 multiply tens, multiply units.

	$50 \times 3=150$
	$8 \times 3=24$
adding gives $\quad 58 \times 3=174$	

Method 2 multiply next ten then subtract

$$
\begin{aligned}
60 \times 3 & =180 \\
2 \times 3 & =6 \\
\text { subtract } 58 \times 3 & =174
\end{aligned}
$$

Multiplying by 10,100 ...
When multiplying by 10 each digit is moved up one place to the left When multiplying by 100 each digit is moved up two place to the left...
$27 \times 10=270$
$38 \times 100=3800$
$246.5 \times 10=2465$
Th H T U

The decimal point does not move!

Written method

Example 1

Find 742×8

Estimate: $742 \times 10=7420$

Calculate: Work from the right hand side Multiply units \rightarrow multiply tens \rightarrow multiply hundreds

Multiplying by multiples of 10,100 ...
To multiply by 40 multiply by 4 then multiply by 10 and so on
To multiply by 400 multiply by 4 then multiply by 100 and so on
Example 1 Find 37×40 Example 2 Find 45.7×300

$$
\begin{array}{rlrl}
& 37 \times 4 & =148 & \\
& & 45.7 & \times 3=137.1 \\
& 148 \times 10 & =1480 & \\
\text { so } \quad & & 137.1 \times 100=13710 \\
37 & \times 40 & =1480 & \text { so } \\
45.7 & \times 300=13710
\end{array}
$$

Example 3 37×28

Method 1
37

$\times 28$	
296	(8×37)
740	(20×37)
1036	

Method 2 Grid method

Multiplying decimals level $2 / 3$

Example
Find 32.5×2.8
Estimate $33 \times 3=99$
Calculate

325	Both numbers have been multiplied by 10 .
+28	$10 \times 10=100$ so we divide the answerby 100 .
2600	
6500	
9100	$9100 \div 100=91$

The number of decimal places in the answer will be the same as the total number of decimal places in the question.

DIVISION

Related words : split, share, quotient

Level 1

Repeated subtraction from small numbers introducing division more used as a mental method.
$65 \div 5$
65
$-50 \div 5=10$
15
$-15 \div 5=3$ so $65 \div 5=13$
0

Level 2 onwards

Example 1
Find $126 \div 7$

7 | $\frac{18}{12^{5}}$ |
| :--- |

Example 2

Find $62.1 \div 3$
20.7
$3 \longdiv { 6 2 . 1 }$

Start dividing from the left hand side

Example 3

Find $86 \div 5$

$$
5 \longdiv { 1 7 \cdot 2 }
$$

If there is a remainder at the end of the calculation add a decimal point and zeroes after the decimal point.

Dividing by 10, 100...

When dividing by 10 each digit is moved up one place to the left \dagger
When dividing by 100 each digit is moved up two places to the left...

The decimal point does not move!

Dividing by multiples of 10,100 ...

To divide by 40 divide by 4 then by 10 or by 10 then 4 and so on To divide by 400 divide by 4 then by 100 or by 100 then 4 and so on
Example 1

Find $320 \div 40$
$320 \div 10=32$
$32 \div 4=8$
so $320 \div 40=8$

Dividing by a decimal Level 3
Find $360 \div 0.3$
$\frac{360}{0.3} \times 10=\frac{3600}{3}=1200$

Multiply top and bottom by a multiple 10

ORDER OF OPERATIONS Level $2 / 3$

Would the calculation $7+3 \times 5$ lead to the answer 50 or $22 ?$

$$
\begin{aligned}
& 7+3 \times 5 \\
= & 7+15 \\
= & 22
\end{aligned}
$$

When there is more than one operation involved in a calculation we have a specific order to carry them out. The order can be remembered by using the mnemonic BODMAS.
(B)rackets
(O)f
(D)ivide
(M)ultiply
(A)dd

Of equal importance
(S)ubract

Level 2
Example 1
Find $50-10 \div 2$
$=50-5$ divide firs \dagger
$=45$ then subtract

Example 2 Find 15-7+6
$=8+6$
$=14$

Level 3
Example 3

Find $(13-5) \times 7$	bracket first	
$=$	8×7	then multiply
$=$	56	

FORMULAE Level $2 / 3$

When using a formula

- Write down the formula
- Replace the variables with the given numbers (this is called SUBSTITUTION)
- Solve the equation

Example 1 Level 2

The formula for calculating the perimeter of a rectangle with length, I and breadth b is $P=2 l+2 b$.
Find the perimeter of a rectangle with length 20 centimetres and breadth 13 centimetres.
$P=21+2 b \quad I=20 \mathrm{~cm}, b=13 \mathrm{~cm}$
$P=2 \times 20+2 \times 13$
$P=40+26$
$P=66$

The perimeter is 66 cm .

Example 2 Level 3

Find the volume of this cuboid.
$V=1 \times b \times h$
$V=10 \times 8 \times 6$

$V=480 \mathrm{~cm}^{3}$

TIME

Things to remember

- 12 months in a year
- 30 days has September, April, June and November all the rest have 31 except February with 28 days clea and 29 in a leap year.
- 52 weeks in a year
- 365 days in a year
- 366 days in a leap year (the last two digits of a leap year are divisible by 4 or will be 00)

Telling the time

1 hour $=60$ minutes
1 minute $=60$ seconds

Finding time intervals Level 2

The length of a time interval can be found by counting on.

Example

A film starts at 6.50 pm and ends at 8.35 pm .
What is the length of the film.

Length of film $=10$ minutes +1 hour +35 minutes $=1$ hour 45 minutes

Converting time
 Level 2

To convert from minutes to hours divide by 60 To convert from hours to minutes multiply by 60

Minutes	Hours
60	1
120	2
180	3

Example 1

Convert 3.2 hours to minutes
3.2×60
$=192$ minutes

Example 2

Convert 5h 18 minutes to hours

18 minutes : $18 \div 60=0.3$ hours
5 hours 18 minutes $=5.3$ hours

Speed, distance and time level $2 / 3$

We can use the following formulae to calculate information about a journey where the speed is constant.
$D=S \times T$
$T=\frac{D}{S}$
S
$S=\frac{D}{T}$

Example A car travels for 3 hours at an average speed of 60 miles per hour, how far did it travel?
$D=S \times T$

$D=60 \times 3$
$D=180$ miles

Example Level 3

A car travels a distance of 180 kilometres at an average speed of 50 kilometres per hour. How long did the journey take?

$$
\begin{aligned}
& T= \frac{180}{50}=3.6 \text { hours }=\text { 3hours } \\
& \text { 36minutes } \\
& \begin{array}{l}
\text { Remember to divide by } 50 \\
\text { divide by } 10 \text { then by } 5
\end{array} \\
& \text { minutes }
\end{aligned}
$$

FRACTIONS

What fraction of the shapes are circles?
There are 5 shapes. 2 out of 5 shapes are circles.
We can write this as a fraction. $\frac{2}{5}$ of the shapes are circles.

$$
\frac{2}{5} \quad \frac{\text { The numerator }}{\text { The denominator }}
$$

Equivalent fractions Level 2

Fractions of the same value can be written in many different forms.

$\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8} \quad \frac{2}{3}=\frac{4}{6}=\frac{6}{9}$

In the picture above $6 / 10$ of the shapes are triangles.
This fraction may be simplified.

To simplify a fraction divide the numerator and denominator by the same number.

Finding a unit fraction Level 2
To find $\frac{1}{2}$ divide by 2 , to find $\frac{1}{3}$ divide by 3 , to find $\frac{1}{8}$ divide by 8 ... Divide by the denominator.

Example
$\frac{1}{6}$ of $84=84 \div 6=14$
Finding a fraction Level 2
Example find $\frac{3}{4}$ of $£ 36$
First find $\frac{1}{4}$ of $£ 36$

$$
\frac{1}{4} \text { of } £ 36=£ 36 \div 4=9
$$

then find $\frac{3}{4}$ of $£ 36$

$$
\frac{3}{4} \text { of } £ 36=£ 9 \times 3=£ 27
$$

by multiplying $\frac{1}{4}$ by 3

PERCENTAGES

Percent means out of 100
$17 \%=\frac{17}{100}=0.17$
$25 \%=\frac{25}{100}\left(=\frac{1}{4}\right)=0.25$
$8 \%=\frac{8}{100}\left(=\frac{2}{25}\right)=0.08$

amount shaded $30 \%=\frac{30}{100}\left(=\frac{3}{10}\right)=0.3$

Every percentage may be written as an equivalent fraction or decimal.

Commonly used percentages

percentage	fraction	decimal
50%	$1 / 2$	0.5
25%	$1 / 4$	0.25
75%	$3 / 4$	0.75
10%	$1 / 10$	0.10
20%	$1 / 5$	0.20
1%	$1 / 100$	0.01
$331 / 3 \%$	$1 / 3$	$0.3 \dot{3}$
$662 / 3 \%$	$2 / 3$	$0.6 \dot{6}$
$12 \frac{1}{2} \%$	$1 / 8$	0.125

Finding a percentage without a calculator
Convert to equivalent fraction level $2 / 3$

Example 1

Find 25% of 60
25% of 60
$=\frac{1}{4}$ of 60
$=60 \div 4$
$=15$

Example 2
Find $331 / 3 \%$ of 17100
$331 / 3 \%$ of 17100
= $1 / 3$ of 17100
$=17100 \div 3$
$=5700$

Use multiples of 10% and 1%

Example 1 Level 2/3
Find 70% of 240
10% of $240=\frac{1}{10}$ of $240=24$
70% of $240=24 \times 7=168$

Example 2 Level 3

Find 37% of $£ 80$

$$
\begin{aligned}
10 \% \text { of } £ 80 & =£ 8 \\
\text { so } 30 \% \text { of } £ 80 & =3 \times £ 8 \\
& =£ 24 \\
1 \% \text { of } £ 80 & =£ 0.80 \\
\text { so } 7 \% \text { of } £ 80 & =7 \times £ 0.80 \\
& =£ 5.60 \\
37 \% \text { of } £ 80 & =£ 24+£ 5.60 \\
& =£ 29.60
\end{aligned}
$$

Finding a percentage with a calculator Level 3

We do not use the percentage button on a calculator. We convert the percentage to a fraction or decimal.

Example

Find 27% of $£ 108$
method 1
27% of $£ 108$
$=0.27 \times 108$
$=£ 29.16$
method 2
27% of $£ 108$
$=\frac{27}{100}$ of 108
$=27 \div 100 \times 108$
$=£ 29.16$

Expressing an amount as a percentage Level 2/3

©
To express an amount as a percentage of a total, first write it as a fraction of the total.

Example

There were 14 adults and 6 children in a doctor's waiting room. What percentage were children?

Total number of people $=6+14=20$
Fraction of children $=\frac{6}{20}=\frac{3}{10}$
Percentage of children $=30 \%$

Calculator method

Roy scored 16 /30 in his French test. Calculate this as a percentage to the nearest 1\%

$$
\frac{16}{30}=16 \div 30=0.53333=53 \%
$$

Increasing/decreasing by a percentage Level 3

Example 1

The value of a house was $£ 150000$. Over the next year the value increased by 18\%

```
Method 1 Level 3
18% of £150 000 = £27 000 increase
£150 000 + £27 000 = £177 000
```

Method 2 Level 3/4 calculator
$100 \%+18 \%=118 \%$
118% of $£ 150000$
$=1.18 \times £ 150000$
$=£ 177000$

Example 2

Decrease 315 metres by 7\%

Method 1 Level 3
7% of $315=22.05$ decrease
315-22.05 $=292.95$ metres
Method 2 Level 3/4 calculator
$100 \%-7 \%=93 \%$
93% of $315=0.93 \times 315=292.95$ metres

RATIO Level 3

0
Ratios are used to compare quantities.
$\bigcirc \bigcirc \square$

\square $\bigcirc \triangle$ $\bigcirc \square$ \square

The ratio of:
circles:squares
squares: circles
$=4: 5$
triangles: squares
$=2: 4$
This ratio may be simplified

Simplifying a ratio

The ratio of white counters
to black counters is 5:10.
The counters may be grouped
So we have a ratio of 1:2.

This is called simplifying a ratio.
2: 6 simplifies to $1: 3$ ($\div 2$ on both sides)
6: 15 simplifies to 2:5 ($\div 3$ on both sides)

Sharing in a given ratio

Example

Share $£ 60$ in the ratio $7: 3$.

7:3 represents 7 parts to 3 parts. Total $=10$ parts
Find 1 part

$$
£ 60 \div 10=£ 6
$$

7 parts $=7 \times £ 6=£ 42$
3 parts $=3 \times £ 6=£ 18$
$£ 60$ is shared into $£ 42$ and $£ 18$

Using ratio

Example

A rope is cut into two pieces in the ratio 2:5. If the shorter piece is 40 centimetres how long was the original rope?

2 parts $=40 \mathrm{~cm}$
1 part $=40 \mathrm{~cm} \div 2=20 \mathrm{~cm}$
7 parts $=20 \mathrm{~cm} \times 7=140 \mathrm{~cm}$

	Parts	Rope (cm)
You could also use a table	2	40
long.	1	20
	7	140

PROPORTION

Level 3

When two quantities are in proportion use a table to solve problems.

Example 1

A box of 20 pens costs $£ 3.50$. How much would 80 pens cost?
$\left.\times 4 \begin{array}{c|c}\text { pens } & \text { Cost (£) } \\ \hline 20 & 3.50 \\ 80 & 14\end{array}\right) \times 4$

Example 2

Eight tickets to the cinema cost £41.60. Find the cost of three tickets.

	tickets	Cost (£)	$\div 8$	This method is called the unitary method as we find one unit first.
	1	5.20	$\times 3$	Three tickets cost $£ 15.60$
$\times 3$	3	15.60		

INFORMATION HANDLING
 Frequency tables

Data may be organised in a frequency table.
The number of absences in a class is counted each day for three weeks is counted.

4	1	1	1	2
1	0	0	1	1
1	2	0	2	2

The frequency is how often something occurs. Each occurrence is represented by a tally on the frequency table.

absences	tally	frequency		
0	$\\|\\|$	3		
1	HI II	7		
2	$\\|\\|$	4		
3		0		
4	$\\|$	1		

LINE GRAPH

The height of a sunflower.

days	0	5	10	15	20	25	30	35	40
height	0	3	7.5	16	22	26	34	36	45

The height of a sunflower

- Top line of table is on the horizontal axis
- Choose a suitable scale
- Draw axes with a ruler
- Align the scales with the vertical lines not the boxes
- Label the axes and give the graph a title
- Plot data neatly and accurately

Bar graph

- Choose a suitable scale
- Draw axes and bars with a ruler
- Write the vertical scale on the lines
- Align the labels on the horizontal axis with the bars
- Make bars the same width
- You may wish to leave a space between each bar
- Label the axes and give the graph a title
- Draw bars neatly and accurately

Mean, mode and median Level 4 (not a numeracy outcome)

There are three measures of average.
Mean $\frac{\text { Total of data }}{\text { Number of pieces of data }}$

Mode The most common piece of data.
Median Arrange data in order and find the middle of the data

The number of millimetres of rain measured over 8 weeks is given below.

NOTE: If the number of pieces of data is odd the median will be a piece of data. If the number is even the median will be half way between two pieces of data.

PROBABILITY

The probability or chance of an event happening can be measured on a scale from 0 to 1
$0 \quad 0.5 \quad 1$
Impossible equally likely certain

We give probabilities as a fraction or decimal.

The probability of an event happening is given by
probability $=\frac{\text { number of favourable outcomes }}{\text { total number of outcomes }}$

Example
There are 8 red counters and 5 blue counters in a bag. If one is chosen at random what is the probability it is red?

Probability $($ red $)=8$
13

