Surds

1. Simplify
(a) $\sqrt{24}+\sqrt{600}$
(b) $4 \sqrt{3}-\sqrt{27}$
(c) $\sqrt{32}+2 \sqrt{8}$
(d) $3 \sqrt{5}+\sqrt{20}-2 \sqrt{18}$
(e) $\sqrt{300}-5 \sqrt{12}+2 \sqrt{27}$
(f) $\sqrt{28}-\sqrt{1000}+3 \sqrt{63}$
(g) $2 \sqrt{12}+\sqrt{40}+3 \sqrt{90}$
(h) $\sqrt{500}-2 \sqrt{45}+\sqrt{63}$
(i) $\sqrt{700}-5 \sqrt{28}$
2. $f(x)=4 \sqrt{x}$.
(a) Evaluate $\mathrm{f}(45)$.
(b) Given $\mathrm{f}(\mathrm{a})=24$, find a .
3. $f(x)=3 \sqrt{x}$
(a) Find $f(18)$
(b) Given $f(x)=2$, find x.
4. Expand the brackets and simplify
(a) $\sqrt{2}(\sqrt{6}+\sqrt{2})$
(b) $\sqrt{3}(2 \sqrt{3}-5)$
(c) $\sqrt{6}(4-\sqrt{3})$
(d) $\sqrt{5}(2 \sqrt{5}-3)$
(e) $\sqrt{6}(3 \sqrt{10}-2 \sqrt{6})$
(f) $2 \sqrt{2}(\sqrt{14}+5 \sqrt{2})$
(g) $\sqrt{\mathrm{x}}(\sqrt{\mathrm{x}}-3)$
(h) $\sqrt{\mathrm{u}}(2 \sqrt{\mathrm{u}}+5)$
(i) $3 \sqrt{2}(2 \sqrt{2}-4 \sqrt{10})$
(j) $2 \sqrt{3}(3 \sqrt{3}+\sqrt{8})$
(k) $(\sqrt{3}+\sqrt{2})^{2}$
(l) $(\sqrt{5}-2)^{2}$
(m) $(\sqrt{7}-2)(\sqrt{7}+2)$
(n) $(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})$
(o) $(2 \sqrt{5}-1)(2 \sqrt{5}+1)$
5. Express with a rational denominator in its simplest form
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{2}{\sqrt{5}}$
(c) $\frac{6}{\sqrt{2}}$
(d) $\frac{21}{\sqrt{7}}$
(e) $\frac{10}{3 \sqrt{5}}$
(f) $\frac{14}{5 \sqrt{2}}$
(g) $\frac{\sqrt{2}}{\sqrt{14}}$
(h) $\frac{\sqrt{3}}{\sqrt{24}}$
(i) $\frac{\sqrt{2}}{\sqrt{40}}$
(j) $\frac{\sqrt{5}}{2 \sqrt{30}}$
6. $f(x)=\frac{2}{\sqrt{x}}$
(a) Express $f(3)$ with a rational denominator.
(b) Given $f(x)=4$, find x.
7. $f(x)=\frac{10}{3 \sqrt{x}}$
(a) Express $f(5)$ with a rational denominator in its simplest form.
(b) Given $f(a)=2$, find a.
8. Calculate the area of each rectangle below. Give your answer as a surd in its simplest form.
(a)

(b)

(c)
$\sqrt{3}$
9. Calculate the area of each right-angled triangle below. Give your answer as a surd in its simplest form.
(a)

(b)

(c)

10. The shape below consists of a rectangle and a right-angled triangle.

Calculate the area of this shape. Give your answer as a surd in its simplest form.

11. Calculate x in each of the following. Give your answer as a surd in its simplest form.
(a)

(b)

(c)

(d)

12. Each shape below is a square. Calculate x giving your answer as a surd in its simplest form.
(a)

(b)

(c)

Use the table opposite to help answer the questions below.

	30^{0}	45^{0}	60^{0}
\sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

13. The diagram opposite shows a triangle ABC .

Calculate the length of BC.
Give your answer as a surd in its simplest form.

14. Calculate x in the triangle opposite.

15. The diagram shows triangle ABC .

Show that $\quad \cos \mathrm{BAC}=\frac{3 \sqrt{2}}{5}$

16. Calculate the length of x in the triangle opposite. Give your answer as a surd expressed with a rational denominator.

17. In the triangle shown, prove that

$$
x=2 \sqrt{13}
$$

18. Show that the triangle opposite is right-angled at the point P .

19. The diagram opposite shows triangle KLM.

Show that

$$
x=6 \sqrt{3}
$$

20. The diagram opposite shows a parallelogram ABCD.
Given the information in the diagram calculate the area of this parallelogram.
Give your answer as a surd in its simplest form.

