<u>Surds</u>

- 1. Simplify (a) $\sqrt{24} + \sqrt{600}$ (b) $4\sqrt{3} - \sqrt{27}$ (c) $\sqrt{32} + 2\sqrt{8}$ (d) $3\sqrt{5} + \sqrt{20} - 2\sqrt{18}$ (e) $\sqrt{300} - 5\sqrt{12} + 2\sqrt{27}$ (f) $\sqrt{28} - \sqrt{1000} + 3\sqrt{63}$ (g) $2\sqrt{12} + \sqrt{40} + 3\sqrt{90}$ (h) $\sqrt{500} - 2\sqrt{45} + \sqrt{63}$ (i) $\sqrt{700} - 5\sqrt{28}$
- $2. f(x) = 4\sqrt{x} .$
 - (a) Evaluate f(45).
 - (b) Given f(a) = 24, find a.
- 3. $f(x) = 3\sqrt{x}$
 - (a) Find f(18)
 (b) Given f(x) = 2, find x.
- 4. Expand the brackets and simplify
- (a) $\sqrt{2}(\sqrt{6} + \sqrt{2})$ (b) $\sqrt{3}(2\sqrt{3} 5)$ (c) $\sqrt{6}(4 \sqrt{3})$ (d) $\sqrt{5}(2\sqrt{5} - 3)$ (e) $\sqrt{6}(3\sqrt{10} - 2\sqrt{6})$ (f) $2\sqrt{2}(\sqrt{14} + 5\sqrt{2})$
- (g) $\sqrt{x}(\sqrt{x} 3)$ (h) $\sqrt{u}(2\sqrt{u} + 5)$ (i) $3\sqrt{2}(2\sqrt{2} 4\sqrt{10})$
- (j) $2\sqrt{3}(3\sqrt{3} + \sqrt{8})$ (k) $(\sqrt{3} + \sqrt{2})^2$ (l) $(\sqrt{5} 2)^2$
- (m) $(\sqrt{7} 2)(\sqrt{7} + 2)$ (n) $(\sqrt{3} + \sqrt{2})(\sqrt{3} \sqrt{2})$ (o) $(2\sqrt{5} 1)(2\sqrt{5} + 1)$
- 5. Express with a rational denominator in its simplest form
- (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{2}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{2}}$ (d) $\frac{21}{\sqrt{7}}$ (e) $\frac{10}{3\sqrt{5}}$ (f) $\frac{14}{5\sqrt{2}}$ (g) $\frac{\sqrt{2}}{\sqrt{14}}$ (h) $\frac{\sqrt{3}}{\sqrt{24}}$ (i) $\frac{\sqrt{2}}{\sqrt{40}}$ (j) $\frac{\sqrt{5}}{2\sqrt{30}}$ 6. $f(x) = \frac{2}{\sqrt{x}}$
 - (a) Express f(3) with a rational denominator.
 - (b) Given f(x) = 4, find x.

- 7. $f(x) = \frac{10}{3\sqrt{x}}$
 - (a) Express f(5) with a rational denominator in its simplest form.
 - (b) Given f(a) = 2, find a.
- 8. Calculate the area of each rectangle below. Give your answer as a surd in its simplest form.

9. Calculate the area of each right-angled triangle below. Give your answer as a surd in its simplest form.

10. The shape below consists of a rectangle and a right-angled triangle. Calculate the area of this shape. Give your answer as a surd in its simplest form.

11. Calculate x in each of the following. Give your answer as a surd in its simplest form.

12. Each shape below is a square. Calculate x giving your answer as a surd in its simplest form.

3√6

Х

Use the table opposite to help answer the questions below.

	30^{0}	45^{0}	60^{0}
sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

13. The diagram opposite shows a triangle ABC.

Calculate the length of BC. Give your answer as a surd in its simplest form.

14. Calculate x in the triangle opposite.

15. The diagram shows triangle ABC.

Show that
$$\cos BAC = \frac{3\sqrt{2}}{5}$$

Give your answer as a surd expressed with a rational denominator.

16. Calculate the length of x in the triangle opposite.

17. In the triangle shown, prove that

 $x = 2\sqrt{13}$

 $3\sqrt{2}$

18. Show that the triangle opposite is right-angled at the point P.

6

 $3\sqrt{2}$

R

19. The diagram opposite shows triangle KLM.

Show that

 $x = 6\sqrt{3}$

20. The diagram opposite shows a parallelogram ABCD.Given the information in the diagram calculate the area of this parallelogram.Give your answer as a surd in its simplest form.

