Perth Academy

National 5 Relationships

- 1. (a) Factorise $x^2 8x + 12$.
 - (b) Sketch the graph of $y = x^2 8x + 12$, showing clearly where the graph meets the coordinate axes.
 - (c) Find the equation of the axis of symmetry and the minimum value of the function.
- 2. Find the roots of $x^2 4x + 1 = 0$, correct to 2 decimal places.
- 3. Sketch the graph of each of these functions. Show the coordinates of the points of intersection with the axes, and show also the coordinates of the turning points.
 - (a) $y = x^2 + 2x 8$ (b) $y = x^2 7x + 10$ (c) $y = 6x x^2$
- 4. (a) Draw a sketch of the graph of $y = x^2$.
 - (b) Hence sketch the following graphs. Remember to show on each graph the coordinates of all intersections with the axes and the turning point.

(i)
$$y = x - 3^2$$
 (ii) $y = x - 3^2 + 5$ (iii) $y = x - 3^2 - 4$

5. (a) Simplify $\frac{a^3 \times a^{-7}}{a^{-2}}$

- (b) Expand and simplify 3x-4 $2x-3^2$
- (c) $f x = x^{\frac{3}{2}}$. Find t such that f t = 8
- 6. The sketch below shows the graph of $y=12-x-x^2$. The curve crosses the *x*-axis at A and B and the *y*-axis at C.
 - (a) Find the coordinates of A, B and C.
 - (b) Find the coordinates of the turning point.

7. Change the subject of the formula $t = \frac{7s+4}{2}$ to *s*.

8. A bag has 27 marbles. Some are black and some are white.

The probability that a marble chosen at random is black is $\frac{4}{9}$.

- (a) What is the probability that a marble chosen at random is white?
- (b) How many white marbles are in the bag?
- 9. (a) Copy and complete the table for the function $y = 2^x$.

X	-3	-2	-1	0	1	2	3	4
$y = 2^x$								

- (b) Use your values to draw a rough sketch graph of $y = 2^x$.
- 10. Repeat Question 9 for the function $y = 3^x$, taking x-values from -2 to 3. Do the sketch for $y = 3^x$ on the same diagram as Q9 (b).
- 11. A straight line has equation y = mx + c, where *m* and *c* are constants.
 - (a) The point 2,7 lies on this line.Write down an equation in *m* and *c* to illustrate this information.
 - (b) A second point 4,17 also lies on this line.Write down another equation in *m* and *c* to illustrate this information.
 - (c) Hence calculate the values of m and c.
 - (d) Write down the gradient of this line.

12. Part of the graph of the straight line
$$y = \frac{1}{3}x + 2$$
 is shown below.

- (a) Find the coordinates of B.
- (b) For what values of x is y < 0?

13. (a) Simplify
$$\sqrt{2} \times \sqrt{18}$$

(b) Simplify $\sqrt{2} + \sqrt{18}$

(c) Hence show that
$$\frac{\sqrt{2} \times \sqrt{18}}{\sqrt{2} + \sqrt{18}} = \frac{3\sqrt{2}}{4}$$