1. Solve these simultaneous linear equations:
(a) $3 x+2 y=1$
$4 x-y=5$
(b) $4 p+3 q=2$
$7 p+2 q=-3$
2. A group of 25 people, adults and children, visited the R.S.S. Discovery at "Discovery Point". Charges for entry were $£ 5$ for an adult and $£ 2$ for a child.
The total entry charge was $£ 95$.
How many adults, and how many children were in the group? Do not use "trial and error".
3. A council decides to plant rowan and maple trees in a park.

The trees are to be planted with a density of 720 trees per hectare.
The council spends $£ 1500$ on the trees and decides to plant an area of 0.25 hectares.
Rowan trees cost $£ 7.50$ each and maple trees cost $£ 9$ each.
Given that the council buys r rowan trees and m maple trees,
(a) Explain why $m+r=180$.
(b) Find another equation connecting m and r.
(c) Find the number of maple trees and the number of rowan trees bought by the council.
4. Seats on flights from London to Edinburgh are sold at two prices, $£ 30$ and $£ 50$.

On one flight a total of 130 seats was sold.
Let x be the number of seats sold at $£ 30$ and y be the number sold at $£ 50$.
(a) Write down an equation in x and y which satisfies the above condition.

The sale of the seats on this flight totalled $£ 6000$.
(b) Write down a second equation in x and y which satisfies this condition.
(c) How many seats were sold at each price?
5. (a) Express $a^{1 / 2} a^{-3 / 2}+a^{-1 / 2}$ without brackets in its simplest form.
(b) Express $\frac{1}{x-2}-\frac{1}{x x+2}$ as a single fraction in its simplest form.
(c) Simplify $\frac{x^{2}-4}{3 x+6}, x \neq-2$.
6. A manufacturer claims that his breakfast cereal contains at least 25% fruit. A 750 g packet of the cereal is checked and found to contain 195 g of fruit. What actual percentage of the cereal is fruit?
7. Solve each of the following inequalities:
(a) $5 x+3 \leq 2 x+27$
(b) $10 z-5>9 z-4$
(c) $2 x+7 \leq 5 x-14$
8. Solve each of these equations:
(a) $\frac{x}{2}=4$
(b) $\frac{2 x}{3}=12$
(c) $\quad \frac{x-1}{2}=7$
(d) $\quad \frac{y}{5}+1=7$
(e) $\frac{t}{3}=\frac{1}{4}$
(f) $\frac{a-1}{4}=\frac{1}{2}$
9. The 4th term of each number pattern below is the mean of the previous three terms.
(a) If the first three terms are 1, 6 and 8, calculate the 4th term.
(b) When the first three terms are $x, x+7$ and $x+11$, calculate the fourth term.
(c) When the first, second and fourth terms are $-2 x, x+5$ and $2 x+4$, calculate the 3rd term.
10. (a) Express $x^{2}-6 x+10$ in the form $x-a^{2}+b$.
(b) Express $x^{2}+x+1$ in the form $x+a^{2}+b$.
(c) Express $x^{2}+4 x+1$ in the form $x-a^{2}+b$. Be careful with signs here.
11. In the diagram ABCD and APQR are CONGRUENT rectangles.

The side PQ passes through D and $\angle \mathrm{PDA}=x^{\circ}$.
Find an expression for $\angle \mathrm{DRQ}$ in terms of x.

12. A cylinder has radius $2 x \mathrm{~cm}$ and height $h \mathrm{~cm}$.

A sphere has radius $3 x \mathrm{~cm}$.
Given that the two solids have equal volumes, express h in terms of x.
Use exact values and symbols. No decimals.
13. The $n^{\text {th }}$ triangular number, $T_{n \text {, }}$ is given by the formula $T_{n}=\frac{1}{2} n n+1$.
(a) Evaluate T_{1}, T_{2} and T_{3}, drawing sketches to illustrate your answers.
(b) Evaluate T_{20}.
(c) Show that $T_{n+1}=\frac{1}{2} n^{2}+3 n+2$.
(d) Show that $T_{n}+T_{n+1}$ is a square number.

