1. Solve each of these equations:

(a)
$$3(x+3)+2(x+1)=31$$

(b)
$$4x-(x-2)=18-3x$$

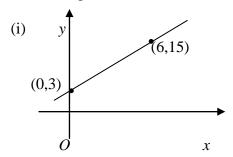
2. Solve these inequalities

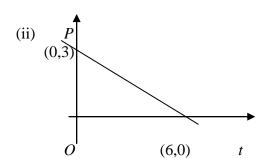
(a)
$$5+2(1+3x) \le 37$$

(b)
$$4(t-3)-17 \le -3(t-1)$$

3. Draw an accurate graph of each of these straight lines (a)

(i)
$$x+y=8$$


(ii)
$$x = 5$$


- Write down the coordinates of the point of intersection of these two lines. (b)
- Find the gradient and y-intercept of each of these straight lines 4.

(a)
$$y = 10 - x$$

(b)
$$3x + 4y = 24$$

Find the equation of each of these straight lines: 5.

6. The following number patterns can be used to sum consecutive square numbers:

$$1^2 + 2^2 = \frac{2 \times 3 \times 5}{6}$$
;

$$1^2 + 2^2 + 3^2 = \frac{3 \times 4 \times 7}{6}$$
;

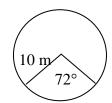
$$1^{2} + 2^{2} = \frac{2 \times 3 \times 5}{6}; \qquad 1^{2} + 2^{2} + 3^{2} = \frac{3 \times 4 \times 7}{6}; \qquad 1^{2} + 2^{2} + 3^{2} + 4^{2} = \frac{4 \times 5 \times 9}{6}.$$

- Express $1^2 + 2^2 + 3^2 + 4^2 + \dots + 10^2$ in the same way. Express $1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$ in the same way. (a)
- (b)
- 7. Simplify:

(a)
$$\frac{3x-12}{x^2-16}$$

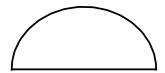
(b)
$$\frac{a^2 - 2a + 1}{a^2 - 1}.$$

8. Rationalise the denominator


(a)
$$\frac{6}{\sqrt{3}}$$

$$(b) \qquad \frac{5}{2\sqrt{2}}$$

- 9. An aircraft weighs t tonnes when fully loaded. It uses f tonnes of fuel per hour. If the weight of the aircraft after h hours of flight is W tonnes, write down a formula for W. Hence calculate W when t = 14, f = 0.25 and h = 3.
- 10. The points A and B have coordinates (a,a^2) and $(2b,4b^2)$, respectively. Determine the gradient of AB, expressing your answer in its simplest form.
- 11. Evaluate, without a calculator
 - (a) $3.8 7.36 \div 8$
- (b) $3.15 \div 300$
- (c) 12.5% of £140


12.

12. Find the area of the sector shown, leaving your answer in terms of π . The radius is 10 m.

- 13. (a) Simplify $b^{\frac{1}{3}} b^{\frac{5}{3}} b^{\frac{2}{3}}$.
 - (b) If b = -2 evaluate this expression.

14.

The sketch shows a semicircle and diameter.

The radius of the semicircle is r units.

If the area of the figure and the perimeter of the figure are numerically equal, show that

$$r = \frac{4}{\pi} + 2.$$