Perth Academy

2.

National 5 Relationships

1. Establish the equation of each of these parabolas in the form y = k x - a x - b.y=

These triangles are mathematically similar, the ratios of corresponding sides being 1:2:3. The middle triangle has area 40cm². Calculate the area of the other two triangles.

- 3. (a) A rectangle has area 20 cm². What happens to its area if its sides are doubled? What is the new area?
 - (b). A cube has volume 15 cm³. What is the volume of a cube with edges twice as long?
 - (c) This cylinder has volume 100 cm^3 . A second cylinder is similar to this one, enlarged by a linear scale factor of 3. Calculate the volume of the bigger cylinder.
- 4. Find the coordinates of the points of intersection with the coordinate axes and also the turning points of each of the following sketch graphs:

The diagrams above show the first three centred-square numbers.

- (a) Draw diagrams to show C_4 and C_5 .
- (b) Write down the values of C_4 and C_5 .
- (c) It can be shown that $C_n = an^2 + bn + 1$.

By considering C_1 and C_2 , find the values of the integers *a* and *b*.

6. For each of the following find the value of *x* and hence the length of the sides of the figure.

7. The garden layout of grass and rosebeds shown here is formed by constructing a circle through the corners of the square lawn.

If the grass has area 289 m^2 calculate the area of each rosebed.

8. Express in simplest form:

(a) $\sqrt{8}$ (b) $\sqrt{45}$ (c) $3\sqrt{18}$ (d) $2\sqrt{12}$

- 8. Simplify the following:
 - (a) $a^3 \times a^5$ (b) $a^6 \div a^2$ (c) $3x^{\frac{1}{2}} \times 2x^{-\frac{1}{2}}$ (d) $(\sqrt{a})^6$ (e) $x^{\frac{1}{2}} (2x^{\frac{1}{2}} + x^{-\frac{1}{2}})$ (f) $x^{\frac{1}{3}} (x^{\frac{2}{3}} + x^{-\frac{1}{3}})$
- 9. Evaluate: (a) $4^{\frac{3}{2}}$ (b) $8^{-\frac{1}{3}}$ (c) $25^{-\frac{3}{2}}$ (d) $32^{\frac{1}{5}}$