1. Expand brackets and simplify:

(a)
$$(x+3)(x+2)$$

(c)
$$(x-1)(x+4)$$

(e)
$$(x+3)(2x+1)$$

(g)
$$(2x+3)(2x-3)$$

(i)
$$(2x-5)(x-2)$$

(b)
$$(x+7)(x+6)$$

(d)
$$(x-4)(x-2)$$

(f)
$$(3x+1)(2x-1)$$

(h)
$$(3x-2)(4x+3)$$

(j)
$$(2x-7)(3x-1)$$

2. Square each of these brackets:

(a)
$$(x+4)^2$$

(c)
$$(2x+1)^2$$

(e)
$$(5x+2)^2$$

(b)
$$(x-7)^2$$

(d)
$$(3x-2)^2$$

(f)
$$(3-x)^2$$

3. Expand and simplify

(a)
$$x+3 \quad x^2+4x+7$$

(b)
$$x-2 \quad x^2-x+3$$

4. Simplify

(a)
$$\sqrt{2} \sqrt{2} - 1$$

(b)
$$2-\sqrt{2} \ 2+\sqrt{2}$$

5. Simplify each of these surds.

(a)
$$\sqrt{12}$$

(b)
$$\sqrt{8} + \sqrt{32}$$

(c)
$$\sqrt{45}$$

- 6. Express with a rational denominator:
 - (a) $\frac{4}{\sqrt{2}}$

(b) $\frac{3}{\sqrt{5}}$

(c) $\sqrt{\frac{1}{8}}$

- 7. Evaluate
 - (a) $3\sqrt{2}^{2}$
- (b) $\sqrt{3}^{4}$
- (c) $\sqrt{2}-1^2$

- 8. Find the exact value of:
 - (a) $25^{\frac{1}{2}}$

(b) $8^{\frac{2}{3}}$

(c) $9^{\frac{3}{2}}$

(d) 2^{-1}

(e) $4^{\frac{3}{2}}$

(f) $4^{-\frac{3}{2}}$

9. Simplify:

(a)
$$x^2 \times x^5$$

(b)
$$x^2 \div x$$

(c)
$$\left(x^3\right)^2$$

(a)
$$x^2 \times x^5$$
 (b) $x^2 \div x^5$ (d) $4y^2 \times 3y^{-1}$ (e) $(x^{\frac{1}{2}})^4$

(e)
$$\left(x^{\frac{1}{2}}\right)^4$$

(f)
$$2a^{-3} \times 4a^{-}$$

Solve each of these equations algebraically, giving your answers as integers or fractions. Do not use 10. decimals.

(a)
$$5x+1=16$$

(b)
$$7x-1=14$$

(c)
$$3(x+5)=36$$

(d)
$$4(1+y)=8$$

(e)
$$3x+5=x+16$$

$$4(1+y)=8$$
 (e) $3x+5=x+16$ (f) $6(x+2)=2x+14$

11. Simplify as far as possible:

(a)
$$3(x+5)-2x+12$$

$$3(x+5)-2x+12$$
 (b) $5(2a+3b)-2(a-2b)$
 $x(x+y)-y(x+y)$ (d) $3(f-g)-(g-f)$

(c)
$$x(x+y)-y(x+y)$$

(d)
$$3(f-g)-(g-f)$$

- A plot of land which cost £40000 in 2009 has appreciated by 40%. 12. (a) What is it now worth?
 - A car cost £14000 new. It depreciates 28% in its first year. (b) Calculate its value at the end of the first year.
 - An antique was sold for £8200 in 1999. In 2003 it was resold for £9600. Calculate the (c) percentage appreciation, correct to one decimal place.
- The area of a triangle for which the lengths of the sides are a, b and c units can be found using the 13. formula

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
, where $s = \frac{1}{2}(a+b+c)$.

This is known as Heron's formula, after a Mathematician from Alexandria who lived about 2000 years ago.

Use this formula to find the area of the triangle sketched below.

