1. Expand brackets and simplify:
(a) $(x+3)(x+2)$
(b) $\quad(x+7)(x+6)$
(c) $\quad(x-1)(x+4)$
(d) $(x-4)(x-2)$
(e) $(x+3)(2 x+1)$
(f) $\quad(3 x+1)(2 x-1)$
(g) $\quad(2 x+3)(2 x-3)$
(h) $(3 x-2)(4 x+3)$
(i) $(2 x-5)(x-2)$
(j) $(2 x-7)(3 x-1)$
2. Square each of these brackets:
(a) $(x+4)^{2}$
(b) $\quad(x-7)^{2}$
(c) $\quad(2 x+1)^{2}$
(d) $(3 x-2)^{2}$
(e) $(5 x+2)^{2}$
(f) $\quad(3-x)^{2}$
3. Expand and simplify
(a) $\quad x+3 \quad x^{2}+4 x+7$
(b) $\quad x-2 \quad x^{2}-x+3$
4. Simplify
(a) $\sqrt{2} \sqrt{2}-1$
(b) $2-\sqrt{2} \quad 2+\sqrt{2}$
5. Simplify each of these surds.
(a) $\sqrt{12}$
(b) $\sqrt{8}+\sqrt{32}$
(c) $\sqrt{45}$
6. Express with a rational denominator:
(a) $\frac{4}{\sqrt{2}}$
(b) $\frac{3}{\sqrt{5}}$
(c) $\sqrt{\frac{1}{8}}$
7. Evaluate
(a) $3 \sqrt{2}^{2}$
(b) $\sqrt{3}^{4}$
(c) $\sqrt{2}-1^{2}$
8. Find the exact value of:
(a) $25^{\frac{1}{2}}$
(b) $8^{\frac{2}{3}}$
(c) $9^{\frac{3}{2}}$
(d) $\quad 2^{-1}$
(e) $4^{\frac{3}{2}}$
(f) $4^{-\frac{3}{2}}$
9. Simplify:
(a) $x^{2} \times x^{5}$
(b) $x^{2} \div x^{5}$
(c) $\quad\left(x^{3}\right)^{2}$
(d) $4 y^{2} \times 3 y^{-1}$
(e) $\left(x^{\frac{1}{2}}\right)^{4}$
(f) $\quad 2 a^{-3} \times 4 a^{-1}$
10. Solve each of these equations algebraically, giving your answers as integers or fractions. Do not use decimals.
(a) $5 x+1=16$
(b) $7 x-1=14$
(c) $3(x+5)=36$
(d) $4(1+y)=8$
(e) $3 x+5=x+16$
(f) $\quad 6(x+2)=2 x+14$
11. Simplify as far as possible:
(a) $3(x+5)-2 x+12$
(b) $5(2 a+3 b)-2(a-2 b)$
(c) $\quad x(x+y)-y(x+y)$
(d) $3(f-g)-(g-f)$
12. (a) A plot of land which cost $£ 40000$ in 2009 has appreciated by 40%. What is it now worth?
(b) A car cost $£ 14000$ new. It depreciates 28% in its first year.

Calculate its value at the end of the first year.
(c) An antique was sold for $£ 8200$ in 1999. In 2003 it was resold for $£ 9600$. Calculate the percentage appreciation, correct to one decimal place.
13. The area of a triangle for which the lengths of the sides are a, b and c units can be found using the formula

$$
A=\sqrt{s(s-a)(s-b)(s-c)}, \text { where } s=\frac{1}{2}(a+b+c) .
$$

This is known as Heron's formula, after a Mathematician from Alexandria who lived about 2000 years ago.

Use this formula to find the area of the triangle sketched below.

