Calculate, without a calculator: 1.

(a)
$$2\frac{1}{2}+1\frac{2}{3}$$
 (b) $3\frac{1}{10}-2\frac{3}{4}$ (c) $4\frac{2}{3}+3\frac{1}{5}$

The area of the sector below is 70 cm^2 . 2. Find the length of the arc AB.

- Calculate the volume of the largest cone which can be placed inside a cube which has edges of length 3. 10 cm. The base of the cone sits on the base of the cube.
- Calculate the gradient of the line segments joining the following pairs of points. 4.
 - C = -1,3 and D = 7,0. (a)
 - E 2, -3 and F 5, -17. (b)
 - G 1, -4 and H 4, -11. (c)
- 5. Multiply the brackets and simplify:
 - (3a-1)(5a-3)(b) (4k+7)(2k-5)(a)
 - (d) $(3x-y)^2$ (3x-2y)(5x-3y)(c)
 - (2x-1)(4x+3)-4(2-x) $(2x-3)(5x^2-4x+1)$ (e) (f)
- 6. Factorise:
 - $x^2 9x + 20$ $y^2 + 4y - 21$ (a) (b)
 - $2a^2 a 1$ $6t^2 + 11t + 3$ (d) (c) $2x^2 - 5x + 3$ $5k^2 + 4k - 1$ (f) (e)
- 7. A cylindrical soft drinks can has height 15 cm and diameter 6.5 cm. A new cylindrical can holds the same volume but has a reduced height of 12 cm. Find the diameter of the new can, correct to 1 decimal place.

- 8. Express each of the following functions in the form indicated
 - (a) $x^2 + 10x + 27 = x + a^2 + b$
 - (b) $x^2 x 1 = x a^2 + b$
 - (c) $11-2x-x^2=a-x+b^2$
 - (d) $12-4x-x^2=a-x+b^2$
- 9. Calculate, without a calculator:
 - (a) 80% of a number is 560. What is the number?
 - (b) $117\frac{1}{2}\%$ of a number is 235. What is the number?
 - (c) With $12\frac{1}{2}\%$ extra, the contents of a can are 900 ml. What are the normal contents?
- 10. By first factorising numerator and denominator, simplify each of these fractions:

(a)
$$\frac{3x+6}{x^2-4}$$
 (b) $\frac{a^2-a-6}{2a^2-5a-3}$ (c) $\frac{x+7}{x^2+6x-7}$

11. Simplify

(a)
$$\frac{1}{x} + \frac{1}{x-1}$$
 (b) $\frac{x+3}{x+3^3}$ (c) $\frac{1}{a-1} - \frac{1}{a+1}$

12. The diagram below shows a square of side length *y* divided into a square of side length *x* and four congruent rectangles.Find an expression for the length of the longer side of each rectangle in terms of *x* and *y*.

