1. Calculate, without a calculator:
(a) $2 \frac{1}{2}+1 \frac{2}{3}$
(b) $3 \frac{1}{10}-2 \frac{3}{4}$
(c) $4 \frac{2}{3}+3 \frac{1}{5}$
2. The area of the sector below is $70 \mathrm{~cm}^{2}$.

Find the length of the arc AB .

3. Calculate the volume of the largest cone which can be placed inside a cube which has edges of length 10 cm . The base of the cone sits on the base of the cube.
4. Calculate the gradient of the line segments joining the following pairs of points.
(a) $\mathrm{C}-1,3$ and $\mathrm{D} 7,0$.
(b) $\mathrm{E}-2,-3$ and $\mathrm{F} 5,-17$.
(c) $\mathrm{G}-1,-4$ and $\mathrm{H} 4,-11$.
5. Multiply the brackets and simplify:
(a) $(3 a-1)(5 a-3)$
(b) $(4 k+7)(2 k-5)$
(c) $\quad(3 x-2 y)(5 x-3 y)$
(d) $(3 x-y)^{2}$
(e) $(2 x-3)\left(5 x^{2}-4 x+1\right)$
(f) $(2 x-1)(4 x+3)-4(2-x)$
6. Factorise:
(a) $x^{2}-9 x+20$
(b) $y^{2}+4 y-21$
(c) $2 a^{2}-a-1$
(d) $6 t^{2}+11 t+3$
(e) $2 x^{2}-5 x+3$
(f) $5 k^{2}+4 k-1$
7. A cylindrical soft drinks can has height 15 cm and diameter $6 \cdot 5 \mathrm{~cm}$.

A new cylindrical can holds the same volume but has a reduced height of 12 cm .
Find the diameter of the new can, correct to 1 decimal place.
8. Express each of the following functions in the form indicated
(a) $x^{2}+10 x+27=x+a^{2}+b$
(b) $x^{2}-x-1=x-a^{2}+b$
(c) $11-2 x-x^{2}=a-x+b^{2}$
(d) $12-4 x-x^{2}=a-x+b^{2}$
9. Calculate, without a calculator:
(a) 80% of a number is 560 . What is the number?
(b) $117 \frac{1}{2} \%$ of a number is 235 . What is the number?
(c) With $12 \frac{1}{2} \%$ extra, the contents of a can are 900 ml . What are the normal contents?
10. By first factorising numerator and denominator, simplify each of these fractions:
(a) $\frac{3 x+6}{x^{2}-4}$
(b) $\frac{a^{2}-a-6}{2 a^{2}-5 a-3}$
(c) $\frac{x+7}{x^{2}+6 x-7}$
11. Simplify
(a) $\frac{1}{x}+\frac{1}{x-1}$
(b) $\frac{x+3}{x+3^{3}}$
(c) $\frac{1}{a-1}-\frac{1}{a+1}$
12. The diagram below shows a square of side length y divided into a square of side length x and four congruent rectangles.
Find an expression for the length of the longer side of each rectangle in terms of x and y.

