1. Do these without a calculator. Show all working.
(a) $1 \frac{1}{2}+2 \frac{1}{3}$
(b) $3 \frac{1}{5}-2 \frac{3}{4}$
(c) $0 \cdot 5+0 \cdot 4 \times 2$
(d) $1-(0 \cdot 6)^{2}$
(e) $2^{3}+3^{2}$
(f) $\frac{1}{2} \times \frac{3}{4} \times 2$
2. Evaluate, without a calculator,
(a) $6.2-4.53-1.1$
(b) $\frac{2}{5}$ of $3 \frac{1}{2}+\frac{4}{5}$
3. Simplify $\frac{3}{m}+\frac{4}{m+1} . \quad m \neq 0,-1$.
4. Sketch the graphs of the following functions:
(a) $y=5 \cos 12 t^{\circ} \quad(0 \leq t \leq 30)$
(b) $y=10+5 \cos 12 t^{\circ} \quad(0 \leq t \leq 30)$
(c) $y=10 \sin 6 x^{\circ} \quad(0 \leq x \leq 60)$
(d) $y=10 \sin 6 x^{\circ}-10 \quad(0 \leq x \leq 60)$
5. A ship leaves port P and steams for 50 km on a bearing of 060°. It then changes course and steams on a bearing of 130° for 80 km , reaching port R .
(a) Calculate the direct distance from port P to port R .
(b) Calculate the bearing of P from R .
6. The diagram shows a circle of radius 8 cm inscribed in an equilateral triangle.

Calculate the perimeter of the triangle.

7. On a $£ 500$ holiday a company offers an easy payment scheme.
$£ 100$ is repaid on the 15 th of each month.
Interest is charged at a rate of 2.5% per month on the amount outstanding at the end of each month.
The first payment is to be made in May.
Find the amount outstanding at the beginning of August.
8. Solve, for $0 \leq x \leq 360$:
(a) $\quad 3 \cos x^{\circ}=-2$
(b) $\quad \tan x^{\circ}=1+\sin 39^{\circ}$
9. Find the area of the figure sketched below. The units are cm .
$8 \cdot 6$

10. A rectangular piece of plastic measuring 100 cm by 18 cm is folded to make a gutter, as shown below.

(a) Express w in terms of x and show that the volume, V cubic centimetres, of the gutter is given by $V=1800 x-200 x^{2}$.
(b) Find, algebraically, the dimensions for a maximum volume, and also the maximum volume.
11. A fishing boat leaver port P and sails 20 km in the direction 057°. It then changes course and sails due west until it is due north of port P.
(a) How far north of port P is the fishing boat?

The boat now sails 15 km in the direction 320° to another port Q .
(b) Calculate the direct distance between the ports P and Q .
(c) If the fishing boat wishes to return to port P calculate the bearing of the course on which it $y^{\text {should sail. }}$
12.

The diagram above shows the graph of the curve $y=\cos x^{\circ}$ and the straight line $y=\frac{1}{2}$.
Find, algebraically, the coordinates of points A, B, C and D, where the line and curve intersect.

