1. Calculate:

(a)
$$3\frac{1}{5} + 4\frac{1}{2}$$

(b)
$$6\frac{3}{4} - 4\frac{2}{3}$$

(c)
$$2\frac{4}{7} \times 1\frac{5}{9}$$

(d)
$$2\frac{2}{5} \div 4\frac{1}{2}$$

(e)
$$\frac{3}{5}$$
 of $2\frac{1}{2} + 1\frac{3}{4}$

(f)
$$1\frac{1}{2}\left(2\frac{1}{3}-1\frac{3}{4}\right)$$

- When a ball is dropped it bounces to 70% of its starting height.A ball is dropped from a height of 4 metres and bounces three times.How high does it reach on its third bounce? Answer to the nearest cm.
- 3. Due to tides, the depth of water in a harbour is given by the formula $D = 6 + 4\cos 32t + 108^{\circ}$, where *D* is the depth in metres and *t* is the time in hours after midnight on Monday night.
 - (a) What are the greatest and least depths of water in the harbour?
 - (b) At what time was low tide on Tuesday morning?
 - (c) A boat needs at least 4 metres of water to leave the harbour. Can the boat leave the harbour at 3.00 p.m. on Tuesday? Justify your answer.
- 4. (a) Expand and simplify 3x+1 x^2-5x+4
 - (b) A car is valued at £3780.

 This is 16% less than last year's value.

 What was the value of the car last year?
 - (c) Simplify as far as possible $\frac{x^3 \times x^{-4}}{x^{-2}}$
 - (d) $I = \sqrt{\frac{W}{R}}$. Change the subject to R.
- 5. Two variables, V and t, are related by the formula V = at + b, where a and b are constants.

When t = 2, V = 11 and when t = 3, V = 14.

Find the values of a and b and hence find the value of V when t = 5.

6. Solve these quadratic equations

(a)
$$7x + 2x^2 = 0$$

(b)
$$2x^2 + 7x - 15 = 0$$

- 7. Solve $2x^2 + 6x 1 = 0$, giving the roots correct to one decimal place.
- 8. Express $f(x) = x^2 8x + 23$ in the form $x a^2 + b$.

Hence sketch the graph of f x, remembering to show the coordinates of the turning point and the point of intersection with the y-axis.

9. OPT is a triangle. M is the mid-point of OP.

$$\overrightarrow{OT} = \mathbf{a}$$
 and $\overrightarrow{TP} = \mathbf{b}$.

(a) Express \overrightarrow{OM} in terms of **a** and **b**.

(b) Express \overrightarrow{TM} in terms of **a** and **b**. Give your answer in its simplest form.

10.

OAB is a triangle. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. P is the point on AB such that AP: PB = 2:1.

(a) Find the vector \overrightarrow{AB} in terms of **a** and **b**.

(b) Find the vector \overrightarrow{OP} in terms of **a** and **b**. Give your answer in its simplest form.

11.

Points A, B and C lie in a vertical plane. AB is horizontal and the dotted line is horizontal. The length of AB is 20 metres.

The angle of depression from A to C is 50° and the angle of depression from B to C is 70° . Find the height of AB above C.