1. In the diagram below ABCD is a square and triangle OAB is right-angled at O with $\mathrm{OA}=\mathrm{OB}$. Relative to the origin O, A and B have position vectors \mathbf{a} and \mathbf{b} respectively.

(a) Express $\overrightarrow{\mathrm{AB}}$ in terms of \mathbf{a} and \mathbf{b}.
(b) If M is the mid-point of $A B$, express $\overrightarrow{\mathrm{OM}}$ in terms of \mathbf{a} and \mathbf{b} and hence or otherwise express $\overrightarrow{\mathrm{OD}}$ in terms of \mathbf{a} and \mathbf{b}.
2.

The edges of the above cuboid have lengths as shown.
(a) Calculate the length of the space diagonal shown by the dotted line.
(b) Calculate the size of the angle between the space diagonal and the base.
3. A cube has space diagonals of length 12 cm .

Calculate the length of an edge, giving your answer as a surd in its simplest form.
4. Find algebraically the value of x in the right-angled triangle sketched below.

5. Simplify
(a) $\frac{a^{3} \times a^{-1}}{a^{-5}}$
(b) a^{-3-1}
(c) \sqrt{x}^{6}
6. A doctor's travelling expenses, $£ C$, are worked out as follows:

For journeys of 150 miles or less $\quad C=\frac{18 N}{100}$
For journeys of more than 150 miles $C=27+\frac{12(N-150)}{100}$,
where N is the number of miles travelled.
(a) How much is she paid for a 90 mile journey?
(b) How much is she paid for a 216 mile journey?
7. What, in square centimetres, is the area of the quadrilateral sketched below?

8. The diagram below shows the circular cross-section of a large sewer with radius $\mathrm{OB}=1 \cdot 2$ metres. The surface of the effluent, AB , has length 2 metres.
(a) Calculate the maximum depth of the effluent, PQ.
(b) What other depth of effluent would give a surface of length 2 metres? Explain your answer.

9. A ship is spotted at position R , which is on a bearing of 315° from a lighthouse L .

The distance between R and L is 10 kilometres.
After the ship has travelled due west to position T, its bearing from the lighthouse is 300°. How far has the ship travelled from R to T ?
10. Simplify
(a) $\frac{1}{a-1}-\frac{2}{a+1}, \quad a \neq \pm 1$
(b) $\frac{3}{x^{2}}+\frac{2}{x^{3}}, x \neq 0$.

