1. In the diagram below RSTU, VWXY represents a cuboid. $\overrightarrow{\mathrm{SR}}$ represents vector $\mathbf{a}, \overrightarrow{\mathrm{ST}}$ represents vector \mathbf{b} and $\overrightarrow{\mathrm{SW}}$ represents vector \mathbf{c}.

Express the following vectors in terms of \mathbf{a} and/or \mathbf{b} and /or \mathbf{c}.
(a) $\overrightarrow{\mathrm{RT}}$
(b) $\overrightarrow{\mathrm{UX}}$
(c) $\overrightarrow{\mathrm{RX}}$
(d) $\quad \overrightarrow{\mathrm{VT}}$
2. Solve these trig equations for $0 \leq x \leq 360$.
(a) $4 \sin x^{\circ}+3=0$
(b) $\quad 3 \tan x^{\circ}=2-3 \sin 231^{\circ}$
3. Explain, using the quadratic formula, why the equation $x^{2}+x+4=0$ has no real solutions.
4. The graph of the function $y=a \times b^{x}$ is shown below. It passes through the points 0,5 and 3,40 . Find the values of a and b.

5. (a) Calculate the mean and standard deviation of the following set of numbers

$$
\begin{array}{llllll}
13 & 17 & 21 & 24 & 25 & 26
\end{array}
$$

(b) Use your answers to (a) to write down the mean and standard deviation of

$$
\begin{array}{llllll}
113 & 117 & 121 & 124 & 125 & 126
\end{array}
$$

6. A tank contains 10 litres of water.

A further 30 litres of water are poured into the tank at a steady rate of 5 litres per minute.
(a) Draw an accurate graph of the volume, V litres, against the time, t minutes.
(b) Write down an equation connecting V and t.
7. The intensity of light, I, emerging after passing through a liquid with concentration, c, is given by the formula $I=\frac{20}{2^{c}}, \quad c \geq 0$.
(a) Find the intensity of light when the concentration is 3 .
(b) Find the concentration of the liquid when the intensity is 10 .
(c) What is the maximum possible intensity?
8. Simplify $\frac{\sqrt{3}}{\sqrt{24}}$, expressing your answer with a rational denominator.
9. (a) $\quad F=f\left(1-\frac{v}{s}\right)$. Change the subject of this formula to v.
(b) $\quad M=80 \times 2^{-t}$. draw a graph of M against t for $0 \leq t \leq 5$.
(c) Solve the inequality $2-53 x-2 \geq 41-3 x$
10. The sketch below shows the curves with equations $y=8+2 x-x^{2}$ and $y=x^{2}+4$.

The curves intersect at points A and B.
Find, algebraically, the coordinates of A and B.
11. Mello aftershave is sold in cylindrical cans. The manufacturer wants to change the dimensions of the can to produce a taller, slimmer can.
The height of the can is to be increased by 30%. By what percentage must the radius be reduced if the volume is to remain the same?

