1. The graph below shows the function $N t=a \times b^{t}$, where a and b are constants.

Find the values of a and b.

2. The value of an antique has grown by 15% per annum for the last two years.

If the present value is $£ 10580$, find the value two years ago.
3. A cylinder has radius $2 x$ units and height h units.

A cone has radius x units and height $4 x$ units.
Given that they have equal volumes, express h in terms of x.
Use exact values; no decimals.
[Volume of cone $V=\frac{1}{3} \pi r^{2} h$.]
4. Express $\frac{x^{2}-9}{3 x^{2}-7 x-6}$ in its simplest form.
5. (a) Sketch the graph of $f x=35+2 x-x^{2}$.
(b) Hence solve the inequality $35+2 x-x^{2}>0$.
6. The diagram below shows a rectangular fence built against a straight wall.

The fencing consists of two lengths of fencing each of length y metres and one length of x metres, as shown in the diagram.

7. (a) Express $x^{3 / 4}-2^{-1 / 2} \quad x^{3 / 4}+2^{-1 / 2}$ without brackets in its simplest form.
(b) Hence solve $x^{3 / 4}-2^{-1 / 2} \quad x^{3 / 4}+2^{-1 / 2}=7 \frac{1}{2}$.
8. The total mass of argon in a flask is 4.15×10^{-2} grams.

The mass of an atom of argon is 6.63×10^{-23} grams.
How many argon atoms are in the flask? Answer correct to 3 significant figures.
9. (a) Solve $3 x^{2}-2 x-4=0$, giving the roots correct to one decimal place.
(b) Solve $\sqrt{5} x=10$, expressing your answer with a rational denominator.
(c) $\quad f x=2 x^{1 / 3}$. Find t such that $f t=6$.
10.

A small goat G is tethered at the corner of a shed in a field of green grass.
The shed is square with sides of length k metres, where $k>2$.
The rope used to tether the goat is 2 metres longer than the side of the shed.
(a) Show that the grazing area available to the goat in square metres is $\frac{3}{4} \pi k+2^{2}+2 \pi$
(b) Find the length of the rope needed to tie the goat to the corner so that the grazing area is 50π square metres.
11. $\mathbf{u}=\binom{2}{-3}$ and $\mathbf{v}=\binom{-4}{1}$.
(a) Find $2 \mathbf{u}-3 \mathbf{v}$
(b) Find $|2 \mathbf{u}-3 \mathbf{v}|$
12. Simplify
(a) $\frac{x^{2} x-1^{3}}{x^{3} x-1}, x \neq 0,1$.
(b) $\frac{a-4^{2}}{a^{2}-4}, a \neq \pm 2$

