1. (a) Given that $\mathbf{r}=\left(\begin{array}{c}-4\end{array}\right)$ and $\mathbf{s}=\binom{1}{-2}$,
(i) Write down the components of $2 \mathbf{r}-3 \mathrm{~s}$
(ii) Find $|2 \mathbf{r}-3 \mathbf{s}|$.
(b) PQRST is a pentagon. TS is parallel to QR and $\mathrm{TS}=2 \mathrm{QR}$. RS is parallel to PT and $\mathrm{RS}=2 \mathrm{PT}$.

Given that $\overrightarrow{\mathrm{PT}}=\mathbf{u}$ and $\overrightarrow{\mathrm{QR}}=\mathbf{v}$,
(i) Find, in terms of \mathbf{u} and/or \mathbf{v},
(1) $\overrightarrow{\mathrm{TS}}$
(2) $\overrightarrow{\mathrm{QS}}$
(3) $\overrightarrow{\mathrm{PQ}}$
(ii) Use vectors \mathbf{u} and \mathbf{v} to find the relationship between the line segments PQ and TR .
2. The population of a town is 53000 and is estimated to be increasing at the rate of 3% p.a. After how many years will the population exceed 60000 ? Show working.
3. Calculate the volume of the largest cone which can be placed inside a cube which has edges of length 10 cm . The base of the cone sits on the base of the cube.
4. The population of Aytoon is 48000 and increasing at 2.4% p.a.

The population of Beetoon is 60000 and decreasing at $4 \cdot 6 \%$ p.a.
In how many years will the population of Aytoon exceed the population of Beetoon?
5. (a) Show that $\frac{2 \sin ^{2} x^{\circ}}{1-\sin ^{2} x^{\circ}}=2 \tan ^{2} x^{\circ}$.
(b) Show that $\left(\cos x^{\circ}+\sin x^{\circ}\right)^{2}-2 \cos x^{\circ} \sin x^{\circ}=1$.
(c) Show that $\cos ^{3} x^{\circ}+\cos x^{\circ} \sin ^{2} x^{\circ}=\cos x^{\circ}$.
6. Factorise:
(a) $4 x^{2}-25 y^{2}$
(b) $2 x^{2}-7 x+3$
(c) $1+x-2 x^{2}$
(d) $x-x^{3}$
7. (a) Simplify $6 y^{\frac{5}{2}} \div 3 y^{\frac{1}{2}}$.
(b) Change the subject of the formula $y=5 t+3 w$ to w.
(c) Solve $2 x^{2}+3 x-1=0$, giving your answers correct to 1 decimal place.
(d) Simplify as far as possible $\sqrt{3}(\sqrt{6}-\sqrt{3})$.
(e) Express $\sqrt{\frac{3}{24}}$ with a rational denominator.
8.

Find the length of the altitude from Q .
9. Two oil platforms in the North Sea are 60km apart.

Platform P is on a bearing of 225° from platform Q .
A ship S is on a bearing of 020° from platform P and 330° from platform Q .
How far is the ship from platform Q ?
10. (a) Express $b^{-\frac{1}{2}} 3 b+b^{\frac{1}{2}}$ without brackets in its simplest form.
(b) Find the value of this expression when $b=8$, leaving your answer as a surd in its simplest form.

