1.

OPQR,STUV is a cuboid relative to the coordinate axes.
M is the mid-point of OR.
N is the point on UQ such that $\mathrm{UN}=\frac{1}{3} \mathrm{UQ}$.
(a) Give the coordinates of R, S, T, U, V, M and N.
(b) Find $\overrightarrow{\mathrm{VM}}$ in component form.
(c) Find $|\overrightarrow{\mathrm{VM}}|$.
2. The rainfall (recorded in mm) in five different towns was as follows:

$$
\begin{array}{lllll}
17 & 23 & 32 & 14 & 26
\end{array}
$$

Calculate the standard deviation, correct to 1 decimal place.
3. The milk yield (in pints) from a sample of eight dairy cows was recorded. It was found that $\sum x=48$ and $\sum x^{2}=324$.
(a) Calculate the sample mean and standard deviation, to 1 decimal place where appropriate.
(b) Another sample had mean 4.9 pints and a standard deviation of 2.0. Compare the two sets of results.
4. A ship, at position P , observes a lighthouse at position Q on a bearing of 065°.

The ship travels 30 km on a bearing of 125° to position R.
From position R, the ship observes the lighthouse on a bearing of 340°.
When the ship is at position R , how far is it from the lighthouse?

5. Simplify:
(a) $\sqrt{12}+\sqrt{3}$
(b) $\sqrt{98}-\sqrt{32}$
(c) $\sqrt{20}+\sqrt{80}$
6. Express with a rational denominator:
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{2}{\sqrt{5}}$
(c) $\sqrt{\frac{8}{24}}$
7. Evaluate:
(a) $8^{2 / 3}$
(b) $4^{3 / 2}$
(c) $27^{1 / 3}$
(d) $16^{-1 / 2}$
8. Evaluate, without a calculator:
(a) $1.5+0.5 \times 3.8$
(b) $\frac{\frac{1}{3}+\frac{1}{4}}{\frac{1}{3}-\frac{1}{4}}$
(c) $\frac{5 x}{y^{2}}-2 z$ when $x=2, y=4, z=-3$.
9. Jayne enters a two-part race.
(a) She cycles for 2 hours at a speed of $x+8$ kilometres per hour.

Write down an expression in x for the distance run.
(b) She then runs for 30 minutes at a speed of x kilometres per hour.

Write down an expression in x for the distance run.
(c) The total distance of the race is 46 kilometres.

Calculate Jayne's running speed.
10. The diagram below shows a square-based pyramid of side 200 cm .

The edges AE, BE, CE and DE all measure 480 cm .

(a) Find the length of diagonal AC.
(b) Find the height OE and hence find the volume of the pyramid.
(c) Find the size of $\angle \mathrm{EAO}$.
(d) Find the size of \angle AEO.

