1. (a) Calculate the mean and standard deviation of the following set of numbers.

$$
\begin{array}{lllll}
17 & 19 & 23 & 24 & 26
\end{array}
$$

(b) Another set had mean 31.7 and standard deviation 1.8 . Make two valid comparisons between the two sets.
2. Tom looked at the cost of 10 different flights to New York.

He calculated that the mean cost was $£ 360$ and that the standard deviation was $£ 74$.
A tax of $£ 12$ is added to each flight.
Write down the new mean and standard deviation.
3. The weight, W kilograms, of a young giraffe is related to its age, M months, by the formula

$$
W=\frac{1}{4} M^{2}-4 M+272
$$

At what age will the giraffe weigh 83 kilograms?
4. One atom of gold weighs 3.27×10^{-22} grams.

How many atoms will there be in one kilogram of gold?
Give your answer in scientific notation correct to 2 significant figures.
5. Given that $f x=x^{2}+3$,
(a) Evaluate $f-4$
(b) Given that $f t=52$, find the value(s) of t.
6. In triangle ABC , angle $\mathrm{ACB}=90^{\circ}, \mathrm{AB}=8$ centimetres and $\mathrm{AC}=4$ centimetres.

Calculate the length of BC, giving your answer as a surd in its simplest form.
7. Two functions are defined by $f x=x^{2}-4 x$ and $g \quad x=2 x+7$.

If $f x=g \quad x$, find the values of x.
8. Evaluate, without a calculator
(a) $846 \div 30-1.09$
(b) $4 \frac{1}{3}-1 \frac{1}{2}$
(c) $\frac{2}{5} \div 1 \frac{1}{10}$
9. A company makes large bags of crisps which contain 90 grams of fat.

The company aims to reduce the fat content of the crisps by 50%.
They decide to reduce the fat content by 20% each year.
Will they have achieved their aim by the end of the 3rd year?
Justify your answer.
10. On a certain day, the depth, D metres, of water in a fishing port t hours after midnight, is given by the formula

$$
D=12 \cdot 5+\sin (30 t)^{\circ} .
$$

(a) Find the depth of water at 1.30 p.m.
(b) The depth is recorded each hour.

What is the maximum difference in the depths during the 24 -hour period?
11. Two variables x and y are connected by the relationship $y=a x+b$.

Sketch a possible graph of y against x to illustrate this relationship when a and b are each less than zero.
12.
$\mathrm{ABCD}, \mathrm{V}$ is a pyramid with rectangular base ABCD .
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}8 \\ 2 \\ 2\end{array}\right), \overrightarrow{\mathrm{AD}}=\left(\begin{array}{c}-2 \\ 10 \\ -2\end{array}\right)$ and $\overrightarrow{\mathrm{AV}}=\left(\begin{array}{l}1 \\ 7 \\ 7\end{array}\right)$.
(a) Express $\overrightarrow{\mathrm{CV}}$ in component form.
(b) Find $|\overrightarrow{\mathrm{CV}}|$.
13. Solve, for $0 \leq x \leq 360$
(a) $7 \cos x^{\circ}-4=0$
(b) $3 \tan x^{\circ}+1=2 \sin 15^{\circ}$

