Pegasys Educational Publishing

CFE National 5

Resource

Unit 2

Relationships

Homework Exercises

* Homework exercises covering all the Unit 2 topics
* + Answers
(C) Pegasys 2013
* + Marking Schemes

National 5 Homework - Relationships

DETERMINING the EQUATION of a STRAIGHT LINE

1. Calculate the gradients of the lines AB and CD shown below.

2. A line passes through the points $\mathrm{A}(-2,-4)$ and $\mathrm{B}(8,1)$.
(a) Find the gradient of the line AB .
(b) Find the equation of the line AB .
3. Find the equation of the line passing through $\mathrm{P}(4,6)$ which is parallel to the line with equation $4 x-2 y+6=0$.
4. A straight line has equation $3 y-2 x=6$.

Find the gradient and y-intercept of the line.
5. Find the equation of the straight line joining the points $\mathrm{P}(-4,1)$ and $\mathrm{Q}(2,-3)$.

National 5 Homework - Relationships

FUNCTIONAL NOTATION

1. A function is defined as $f(x)=x^{2}-4$. Evaluate
(a)
$f(-1)$
(b)
$f(0)$
(c)
$f(9)$
(4)
2. A function is defined by the formula $g(x)=12-5 x$
(a) Calculate the value of $g(5)+g(-2)$
(b) If $g(k)=14$, find k.
3. A function is defined as $f(x)=x^{2}+3$

Find a simplified expression for $f(a+2)-f(a-5)$

National 5 Homework - Relationships

EQUATIONS and INEQUATIONS

1. Solve these equations
(a) $2 x-12=-3$
(b) $5 z+9=4$
(c) $6 y-9=2 y+5$
2. Solve these equations by first multiplying out the brackets
(a) $3(2 x-4)=6$
(b) $6(a-1)=4(a+2)$
3. Solve these inequalities
(a) $7 x>42$
(b) $3 x-2>-11$
4. Solve these inequalities
(a) $9 x+2 \leq 6 x+11$
(b) $5(y-2)>2(y+4)$
(5)
5. Solve these inequalities, giving your answer from the set $\{-3,-2,-1,0,1,2,3,4,5,6\}$
(a) $7 x-3>2 x-23$
(b) $9(y+2) \leq 7(y+4)$

National 5 Homework - Relationships

WORKING with SIMULTANEOUS EQUATIONS

1. Two lines have equations $2 x+3 y=12 \quad$ and $x+y=5$.

By drawing graphs of the two lines, find the point of intersection of the 2 lines.
2. Solve, by substitution, the equations

$$
\begin{align*}
3 a+1 \cdot 2 b & =14 \cdot 4 \\
a & =0 \cdot 5 b+3 \tag{4}
\end{align*}
$$

3. Solve, by elimination, the equations

$$
\begin{align*}
& 3 p-2 q=4 \\
& p-3 q=13 \tag{3}
\end{align*}
$$

4. Mr. Martini is ordering tea and coffee for his cafe. He spends exactly $£ 108$ on these each month. In March he orders 4 kg of tea and 6 kg of coffee. In April he changes his order to 8 kg of tea and 3 kg of coffee.

How much do the tea and coffee cost each per kilogram?
5. An electrical goods warehouse charges a fixed price per item for goods delivered plus a fixed rate per mile.

The total cost to a customer 40 miles from the warehouse for the delivery of 5 items was $£ 30$.
A customer who lived 100 miles away paid $£ 54$ for the delivery of 2 items.

Find the cost to a customer who bought 3 items and lives 70 miles away.
6. A straight line with equation $y=a x+b$ passes through the points $(2,4)$ and $(-2,-2)$.

Find the equation of the line.

National 5 Homework - Relationships

CHANGING the SUBJECT of a FORMULA

1. The formula for changing from ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ is $\quad C=\frac{5}{9} F-32$

Change the subject of the formula to F.
2. $H=w+\frac{50}{m^{2}} \quad$ Change the subject of the formula to m.
3. Change the subject of the formula to x : $A=5+4 \sqrt{ } x$
4. Given that $A=\frac{b+c}{b}$, express b in terms of A and c.

National 5 Homework - Relationships

QUADRATIC GRAPHS

1. (a) This graph has equation in the form $y=k x^{2}$. Find the value of k.

(b) This graph has equation of the form $y=(x+p)^{2}+q$. Write down its equation.

2. Sketch the graphs of the following showing clearly any intercepts with the axes and the turning point.
(a) $y=(x-4)(x+2)$
(b) $y=(x-5)^{2}+3$
3. For the quadratic function $y=3-(x+1 / 2)^{2}$, write down
(a) its turning point and the nature of it.
(b) the equation of the axis of symmetry of the parabola.

15 marks
(C) Pegasys 2013

National 5 Homework - Relationships

WORKING with QUADRATIC EQUATIONS

1. Draw a suitable sketch to solve these quadratic equations.
(a) $\quad x(x-4)=0$
(b) $x^{2}+8 x+12=0$
2. Solve these quadratic equations algebraically.
(a) $5 x^{2}-15 x=0$
(b) $6 x^{2}-7 x-3$
3. Solve the equation $3 x^{2}-3 x-5=0$, giving your answer correct to 2 decimal places.
4. Solve the equation $4 x(x-2)=7$, giving your answer correct to 1 decimal place.
5.

The graph shows the parabola $y=16+6 x-x^{2}$.
Find the coordinates of A, B, C and D.
6. Use the discriminant to determine the nature of the roots of these quadratic equations.
(a) $x^{2}-6 x+8=0$
(b) $4 x^{2}+x+3=0$

National 5 Homework - Relationships

APPLYING the THEOREM of PYTHAGORAS

1. A square snakes \& ladders board has 100 squares and a diagonal of length 35 cm .

Find the length of side of one of the

2.

The figure shows the cross section of a tunnel with a horizontal floor AB which is 2.4 metres wide.

The radius OA of the cross section is 2.5 metres.

Find the height of the tunnel.
3. Calum is making a picture frame, ABCD .

It is 25 cm high and 21.5 cm wide.
To check whether the frame is rectangular, he measures the diagonal, \boldsymbol{d}.

It is 31.5 cm long.

(4)

(4)

Is the frame rectangular?
4. Calculate the perimeter of this field, which is made up of a rectangle and a right angled triangle.

National 5 Homework - Relationships

APPLYING PROPERTIES of SHAPES (1)

1. Find the missing angles in each of these diagrams. Each circle has centre C.
(a)

(b)

(c)

2. Use symmetry in the circle to find the missing angles in the circles (centre C) below.
(a)

(b)

(c)

3. Calculate the sizes of the missing angles in each diagram.

(b)

4. $\quad \mathrm{PR}$ is a tangent to the circle, centre O , at T .

Calculate the length of the line marked x.
© Pegasys 2013

(4)

20 marks

National 5 Homework - Relationships

APPLYING PROPERTIES of SHAPES (2)

1. Find the area of each shape below.

(b)

(4)
2. Find each shaded area below.

3. A window is in the shape of a rectangle 4 m by 2 m with a semicircle of diameter 4 m on top.

Find the area of glass in the window.

4. By dividing the pentagon into triangles or otherwise, find the size of angle ABC .

National 5 Homework - Relationships

SIMILARITY (1)

1. Calculate the value of \boldsymbol{x} and \boldsymbol{y} in the diagrams below.
(a)

2.

The diagram shows a system of roads which are represented below as similar triangles.

A man driving from P to S, reaches R before discovering that the road between R and S is blocked.

He takes the detour $\mathrm{P} \rightarrow \mathrm{R} \rightarrow \mathrm{M} \rightarrow \mathrm{T} \rightarrow \mathrm{S}$.

© Pegasys 2013

National 5 Homework - Relationships

SIMILARITY (2)

1. These two rugs are mathematically similar.

The area of the larger one is $4.5 \mathrm{~m}^{2}$. What is the area of the smaller one?
2. I have two triangular plots in my garden which I have had turfed.

The diagrams below show plans of both areas. Equal angles are marked with the same shape.

The cost depends on the area being tiled.

It cost $£ 16.75$ to buy turf for the smaller area. How much did it cost for the larger one if the triangles are mathematically similar?
3. These two parcels are mathematically similar.

The smaller one has dimensions which are half those of the larger.

If the smaller one has volume $150 \mathrm{~cm}^{3}$, calculate the volume of the larger.
4.

These two perfume bottles are mathematically similar.
The cost depends on the volume of perfume in them.
The larger bottle costs $£ 62$.
Find the cost of the smaller bottle correct to the nearest penny.Pegasys 2013

12 marks

National 5 Homework - Relationships

TRIGONOMETRY (1)

1. Write down the equations of the following graphs.
(a)

(b)

2. Write down the equation of each graph shown below:
(a)

(b)

3. Make a neat sketch of the function $y=-3 \sin 2 x^{0}, 0 \leq x \leq 360$, showing the important values.
4. Make a neat sketch of each of the following for $0 \leq x \leq 360$, showing all important points.
(a) $y=4 \sin (x-45)^{\circ}$
(b) $y=2 \cos x^{0}+1$

National 5 Homework - Relationships

TRIGONOMETRY (2)

1. Write down the exact values of :
(a) $\sin 60^{\circ}$
(b) $\quad \tan 225^{\circ}$
(c) $\quad \cos 300^{\circ}$
(d) $\quad \sin 315^{\circ}$
(4)
2. Write down the period of the following
(a) $y=3 \cos 2 x^{\circ}$
(b) $y=2 \sin 5 x^{\circ}$
(c) $y=4 \cos 1 / 2 x^{\circ}$
(3)
3. Solve for $0 \leq x \leq 360$, giving your answer correct to 3 significant figures.
(a) $\sin x^{\circ}=0.839$
(b) $4 \cos x^{\circ}+7=6$
(c) $\tan ^{2} x^{\circ}=25$
4. Prove the following identities:
(a) $\left(\sin x^{\mathrm{o}}+\cos x^{\mathrm{o}}\right)^{2}=1+2 \sin x^{\mathrm{o}} \cos x^{\mathrm{o}}$
(b) $\tan x^{\circ} \times \sin x^{\circ}=\frac{1}{\cos x^{\circ}}-\cos x^{\circ}$

ANSWERS

National 5 Homework - Relationships

DETERMINING the EQUATION of a STRAIGHT LINE

1. $m_{\mathrm{A} B}=\frac{2}{3} \quad m_{C D}=-2$
2. (a) $m_{\mathrm{A} B}=\frac{1}{2}$
(b) $2 y-x=-6$
3. $y-2 x=-2$
4. $m=\frac{2}{3}$
y - intercept $(0,2)$
5. $3 y+2 x=-5$

National 5 Homework - Relationships

FUNCTIONAL NOTATION

1.

(a) -3
(b) -4
(c) 77
2.
(a) 9
(b) $k=-\frac{2}{5}$
3. $14 a-21$

EQUATIONS and INEQUATIONS

1.

(a) $x=4 \cdot 5$
(b) $z=-1$
(c) $y=3 \cdot 5$
2.
(a) $x=3$
(b) $\quad a=7$
3.
(a) $x>6$
(b) $\quad x>-3$
4.
(a) $x \leq 3$
(b) $\quad y>6$
5.
(a) $\quad\{-3,-2,-1,0,1,2,3,4,5,6\}$
(b) $\quad\{-3,-2,-1,0,1,2,3,4,5\}$

National 5 Homework - Relationships

WORKING with SIMULTANEOUS EQUATIONS

1. $(3,2)$
2. $a=4 ; b=2$
3. $p=-2 ; q=-5$
4. coffee is $£ 12$ per kg and tea is $£ 9$ per kg.
5. $£ 41$.
6. $y=1 \cdot 5 x+1$

National 5 Homework - Relationships

CHANGING the SUBJECT of a FORMULA

1. $F=\frac{9}{5}(C+32)$.
2. $m=\sqrt{\frac{50}{H-w}}$
3. $x=\left(\frac{A-5}{4}\right)^{2}$
4. $b=\frac{c}{A-1}$

National 5 Homework - Relationships

QUADRATIC GRAPHS

1.

(a) $\quad k=2$
(b) $y=(x-3)^{2}+2$.
2.
(a) $\quad x$-axis intercepts 4 and $-2 ; y$-axis intercept $\quad(0,-8) ;$ T. P. $(1,-9)$ minimum
(b) $\quad y$-axis intercept $(0,28)$; T. P. $(5,3)$ minimum
3.
(a) $(-1 / 2,3)$; maximum
(b) $x=-1 / 2$,

National 5 Homework - Relationships

WORKING with QUADRATIC EQUATIONS

1.

(a) $x=0$ or 4
(b) $x=-2$ or -6
2.
(a) $x=0$ or 3
(b) $x=3 / 2$ or $-1 / 3$
3. $1 \cdot 88,-0 \cdot 88$
4. $2.7,-0.7$
5. $\mathrm{A}(-2,0) ; \mathrm{B}(8,0) ; \mathrm{C}(0,16) ; \mathrm{D}(3,25)$
6. (a) discriminant $=4$; roots are real and rational
(b) discriminant $=-47$; roots are non real

National 5 Homework - Relationships

APPLYING the THEOREM of PYTHAGORAS

1. 2.5 cm
2. 4.7 cm
3. Frame is not rectangular
4. $270 \cdot 6$ metres

National 5 Homework - Relationships

APPLYING PROPERTIES of SHAPES (1)

1.

(a) $\quad a=90^{\circ}, b=60^{\circ}$
(b) $c=90^{\circ}, d=65^{\circ}, e=90^{\circ}, f=45^{\circ}, g=45^{\circ}$
(c) $\quad h=60^{\circ}, i=60^{\circ}, j=60^{\circ}, k=30^{\circ}, l=120^{\circ}, m=30^{\circ}$
2.
(a) $a=50^{\circ}, b=50^{\circ} ; c=40^{\circ}$
(b) $\quad d=61^{\circ}, e=29^{\circ}, f=29^{\circ}$
(c) $g=65^{\circ}, h=25^{\circ}, i=65^{\circ}$
3. (a) $a=70^{\circ}, b=50^{\circ}, c=90^{\circ}, d=40^{\circ}$
(b) $e=90^{\circ}, f=35^{\circ}, g=35^{\circ}, h=90^{\circ}, i=55^{\circ}$
4. $\mathrm{PT}=12 \mathrm{~cm}$
© Pegasys 2013

APPLYING PROPERTIES of SHAPES (2)

1. $\begin{array}{ll}\text { (a) } 63 \mathrm{~cm}^{2} & \text { (b) } 63 \cdot 6 \mathrm{~cm}^{2}\end{array}$
2. (a) $\begin{array}{ll}\text { (b) } 10.25 \mathrm{~m}^{2} & \text { (b) }\end{array}$
3. $14 \cdot 28 \mathrm{~m}^{2}$
4. 108°

National 5 Homework - Relationships

SIMILARITY (1)

1. (a) 240 cm (b) 16.5 cm
2. 6.7 km greater

National 5 Homework - Relationships

SIMILARITY (2)

1. $2 \mathrm{~m}^{2}$
2. $£ 150.75$
3. $1200 \mathrm{~cm}^{3}$
4. $£ 15.14$

National 5 Homework - Relationships

TRIGONOMETRY (1)

1. (a) $y=4 \sin 2 x^{\circ}$
(b) $y=3 \cos 1 / 2 x^{\circ}$
2.

(a) $y=-\cos 4 x^{\circ}$
(b) $y=\tan x^{\circ}$
3.

4.
(a)

(b)

National 5 Homework - Relationships

TRIGONOMETRY (2)

1. (a) $\frac{\sqrt{3}}{2}$
(b) 1
(c) $\frac{1}{2}$
(d) $-\frac{1}{\sqrt{2}}$
2.

(a) 180°
(b) 72°
(c) 720°
3.
(a) $57.0^{\circ}, 123^{\circ}$
(b) $105^{\circ}, 256^{\circ}$
(c) $78.7^{\circ}, 101^{\circ}, 259^{\circ}, 281^{\circ}$
4. proof

1. $m_{\mathrm{A} B}=\frac{2}{3} \quad m_{C D}=-2$

1 each
[2 marks]
2. (a) $m_{\mathrm{A} B}=\frac{1+4}{8+2}=\frac{1}{2}$

1 knowing how to find gradient

1 answer
(b) $y+4=\frac{1}{2}(x+2)$

1 substitution
$2 y-x=-6 \quad$ [or equivalent]
1 answer
3. $y=2 x+3$

$$
m=2
$$

1 finding gradient
$y-6=2(x-4)$
$y-2 x=-2 \quad$ [or equivalent]
1 substitution

1 answer
4. $y=\frac{2}{3} x+2$

1 rearranging

$$
m=\frac{2}{3}
$$

y - intercept $(0,2)$
1 stating y-intercept
5. $m_{P Q}=\frac{-3-1}{2+4}=\frac{-4}{6}=-\frac{2}{3}$

1 finding gradient of $P Q$
$y-1=-\frac{2}{3}(x+4)$ or $y+3=-\frac{2}{3}(x-2) \quad 1 \quad$ substitution
$\begin{array}{lrlr}3 y-3 & =-2(x+4) & 3 y+9 & =-2(x-2) \\ 3 y-3 & =-2 x-8 & \text { or } 3 y+9 & =-2 x+4 \\ 3 y+2 x & =-5 & 3 y+2 x & =-5\end{array} \quad$ l rearranging
[3 marks]

Total: 16 marksPegasys 2013

1. (a) $(-1)^{2}-4=-3$
(b) $(0)^{2}-4=-4$
(c) $\quad(9)^{2}-4=77$
2.

$$
\text { (a) } \begin{aligned}
& g(5)=12-5(5)=-13 \\
& g(-2)=12-5(-2)=22 \\
& -13+22=9
\end{aligned}
$$

1 substitution in all three
[4 marks]

1 each answer
(b) $\quad g(k)=12-5(k)=14$

1 changing x to k
1 equating to 14

$$
k=-\frac{2}{5}
$$

1 solution
3.

$$
\begin{array}{lll}
f(a+2)=(a+2)^{2}+3=a^{2}+4 a+7 & 1 & \text { substitution } \\
& 1 & \text { simplifying } \\
f(a-5)=(a-5)^{2}+3=a^{2}-10 a+28 & 1 & \text { substitution } \\
& 1 & \text { simplifying } \\
a^{2}+4 a+7-\left(a^{2}-10 a+28\right) & & \\
=a^{2}+4 a+7-a^{2}+10 a-28 & 1 & \text { subtracting } \\
=14 a-21 & &
\end{array}
$$

1 finding $g(5)$

1 finding $g(-2)$

1 answer

1 simplification

Total: 16 marks
1.

(a) | $2 x$ | $=9$ |
| ---: | :--- |
| x | $=4.5$ |
| 1 | |

1
1
(b) $5 z=-5$

$$
z=-1
$$

(c)

$$
\begin{array}{ll}
4 y=14 & 1 \\
y=3 \cdot 5 & 1
\end{array}
$$

2. (a) $6 x-12=6$

$$
x=3
$$

(b) $6 a-6=4 a+8$

$$
\begin{array}{rlr}
2 a & =14 & 1 \\
a & =7 & 1
\end{array}
$$

3.

(a) $x>6$

1
(b) $3 x>-9$

$$
\begin{equation*}
x>-3 \tag{1}
\end{equation*}
$$

4. (a) $3 x \leq 9$

$$
\begin{equation*}
x \leq 3 \tag{1}
\end{equation*}
$$

(b) $5 y-10>2 y+8 \quad 1$ $3 y>18 \quad 1$ $y>6 \quad 1$

1

1

5.

(a) $5 x>-20$
$\{-3,-2,-1,0,1,2,3,4,5,6\}$
1
(b) $9 y+18 \leq 7 y+28$
$2 y \leq 10 \quad 1$
$\{-3,-2,-1,0,1,2,3,4,5\} \quad 1$

Total: 24 marks

National 5 Working with Simultaneous Equations Homework Marking Scheme- REL

1. Line passing through $(0,4)$ and $(6,0)$

Line passing through $(0,5)$ and $(5,0)$
$(3,2)$
2. $3(0 \cdot 5 b+3)+1 \cdot 2 b=14 \cdot 4$
$2 \cdot 7 b=5 \cdot 4$
$b=2$
$a=0.5 \times 2+3=4$
1
1 substitution

1

1

1 scaling
$p=-2$
$q=-5$
1
[3 marks]
4. $4 t+6 c=108 ; 8 t+3 c=108$

Scaling
1
$t=9$
$c=12$
Tea costs $£ 9$ and coffee $£ 12$ per kilo

3. $9 p-6 q=12 ;-2 p+6 q=-26$

1
each equation

1

1

1 communication
[6 marks]
5. $5 g+40 m=30 ; 2 g+100 m=54$
1 each equation
Scaling
$g=2 ; m=0.5$
$3 \times 2+70 \times 0 \cdot 5=£ 41$
1

g	$=2 ; m=0.5$	1	both values
$3 \times 2+70 \times 0.5=£ 41$	1	final answer	
6. $\quad 4$	$=2 a+b ;-2=-2 a+b$	1	both equations
a	$=1.5$	1	
b	$=1$	1	
y	$=1.5 x+1$	1	

6. $4=2 a+b ;-2=-2 a+b$
1 both equations
$a=1 \cdot 5$
1

$$
b=1
$$

$$
y=1 \cdot 5 x+1
$$

$$
1
$$

Total: 25 marks

1. $C+32=\frac{5}{9} F$

1

$$
\begin{equation*}
9(C+32)=5 F \tag{1}
\end{equation*}
$$

$$
F=\frac{9}{5}(C+32)
$$

1
[3 marks]
2. $H-w=\frac{50}{m^{2}}$

$$
\begin{equation*}
m^{2}(H-w)=50 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m^{2}=\frac{50}{(H-w)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m=\sqrt{\frac{50}{(H-w)}} \tag{1}
\end{equation*}
$$

3. $4 \sqrt{x}=A-5$

$$
\sqrt{x}=\frac{A-5}{4}
$$

$$
x=\left(\frac{A-5}{4}\right)^{2}
$$

4. $A b=b+c$

$$
A b-b=c
$$

$$
b(A-1)=c
$$

$$
b=\frac{c}{(A-1)}
$$

1.

(a)	$8=k(2)^{2}$	1	substitution	
	$k=2$	1		[2 marks]
(b)	$y=(x-3)^{2}$	1		
 +2.	1		[2 marks]

2.

(a) x-axis intercepts 4 and $-2 \quad 1$
y-axis intercept $\quad(0,-8) \quad 1$
T. P. $(1,-9) \quad 1$

Minimum 1
(b) y-axis intercept $(0,28) \quad 1$
T. P. $(5,3) \quad 1$

Minimum 1
3.
(a) $(-1 / 2$ \qquad 1
........3)
1
Maximum
1
(b) $x=-1 / 2$
1

Total: 15 marks

1. (a) graph drawn 1
roots $0,4 \quad 1$
(b) factors 1
graph 1
roots $-2,-6 \quad 1$
2. (a) $5 x(x-3)=0 \quad 1$
roots $0,3 \quad 1$
(b) $(2 x-3)(3 x+1) \quad 1$

Roots $3 / 2,-1 / 3 \quad 1$
3. substituting into quadratic formula 1
discriminant $=69 \quad 1$
first solution $1.88 \quad 1$
second solution $-0.88 \quad 1$
4. $4 x^{2}-8 x-7$ 1
substituting into quadratic formula 1
discriminant $=176 \quad 1$
first solution 2.71
second solution $-0.7 \quad 1$
Roots $3 / 2,-1 / 3$
each bracket
5. $16+6 x-x^{2}=0$
$(8-x)(2+x)=0 \quad 1$
$\mathrm{A}(-2,0) ; \mathrm{B}(8,0) \quad 1$
$16+6(0)-(0)^{2}=16 \mathrm{C}(0,16) \quad 1$
$\mathrm{D}(3, ?) \quad 1$
$16+6(3)-2^{2}=25 \mathrm{D}(3,25) \quad 1$
6. (a) discrimant $=4 \quad 1$ roots are real 1
roots are rational 1
(b) discrimant $=-47 \quad 1$ roots are non - real 1

1

1. $2 x^{2}=35^{2}=1225$

$x^{2}=612.5$	1
$x=24.75$	1

length of diagonal $=2.5 \mathrm{~cm}$
1
2. diagram collating information 1
$x^{2}=2 \cdot 5^{2}-1 \cdot 2^{2} \quad 1$
$x=2 \cdot 2 \quad 1$
height of tunnel $=4.7 \mathrm{~m} \quad 1$
3. $25^{2}+21 \cdot 5^{2}=1087 \cdot 25 \quad 1$
$31 \cdot 5^{2}=992 \cdot 25 \quad 1$
Frame is not rectangular $\quad 1$
Since $25^{2}+21 \cdot 5^{2} \neq 31 \cdot 5^{2} \quad 1$
4. collecting information 1
$40^{2}+70^{2}=6500 \quad 1$
$\sqrt{6500}=80 \cdot 6 \quad 1$
$80+70+40+80 \cdot 6=270 \cdot 6$ metres $\quad 1$

1. (a) $a=90^{\circ}$
$b=60^{\circ}$
(b) $c=90^{\circ}$
$d=65^{\circ}$
$e=90^{\circ}$
$f=45^{\circ}$
$g=45^{\circ}$
(c) $h=60^{\circ}$
$i=60^{\circ}$
$j=60^{\circ}$
$k=30^{\circ}$
$l=120^{\circ}$
$m=30^{\circ}$
$1 / 2$
1

1/2
1/2
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1/2
$1 / 2$
1/2
1/2
$l=120$

1/2 each
(b) $d=61^{\circ}, e=29^{\circ}, f=29^{\circ}$

1/2 each
(c) $g=65^{\circ}, h=25^{\circ}, i=65^{\circ}$

1/2 each
[$4^{1 / 2}$ marks]
3.
(a) $a=70^{\circ}, b=50^{\circ}, c=90^{\circ}, d=40^{\circ}$
1/2 each
(b) $e=90^{\circ}, f=35^{\circ}, g=35^{\circ}, h=90^{\circ}, i=55^{\circ}$
1/2 each
[$4^{1 / 2}$ marks]
4. $x^{2}=13^{2}-5^{2}$

1
$x^{2}=144 \quad 1$
$x=\sqrt{ } 144 \quad 1$
$x=12 \mathrm{~cm}$
1

Total: 20 marks

1. (a) $A=1 / 2 \times 18 \times 7$

$$
A=63 \mathrm{~cm}^{2}
$$

(b) $\mathrm{A}=1 / 4 \times \pi \times 9^{2}$

$$
\begin{equation*}
\mathrm{A}=63 \cdot 6 \mathrm{~cm}^{2} \tag{1}
\end{equation*}
$$

2.

$$
\begin{array}{ll}
\text { (a) } & \mathrm{A}_{1}=7 \times 8.5=59.5 \\
& 1 \\
& \mathrm{~A}_{2}=6.5 \times 3.5=22.75 \\
59.5+22.75=82.25 \mathrm{~m}^{2} & 1 \\
\text { (b) } & A_{\text {square }}=7^{2}=49 \\
& A_{\text {circle }}=\pi \times 3.5^{2}=38.5 \\
49-38.5=10.5 \mathrm{~m}^{2} & 1 \\
& 1
\end{array}
$$

3. $A_{\text {rect }}=4 \times 2=8$

1
$A_{\mathrm{sc}}=1 / 2 \times \pi \times r^{2}=6.28 \quad 1$
$8+6 \cdot 28=14 \cdot 28 \mathrm{~m}^{2} \quad 1$
[3 marks]
4. Central angle $=72^{\circ} \quad 1$

Angle $\mathrm{ABC}=108^{\circ} \quad 1$
1.
(a) $270 / 720$

$$
270 / 720 \times 640
$$

$$
1
$$

240 cm 1
(b) $15 / 20$ 1
$y /(y+5 \cdot 5)$ 1
$15 y+82 \cdot 5=20 y$ 1
$y=16 \cdot 5 \mathrm{~cm}$ 1
[7 marks]
2. $\mathrm{RS}=0.4 \mathrm{~km}$ 1
$\mathrm{MT}=0.5 \mathrm{~km}$ 1
Direct distance $=2.4 \mathrm{~km}$ 1
Diverted distance $=9.1 \mathrm{~km}$ 1
Difference $=6.7 \mathrm{~km}$ 1

1. Linear Scale Factor $=2 / 3$

Area Scale Factor $=(2 / 3)^{2} \quad 1$
Area $=(2 / 3)^{2} \times 4 \cdot 5=2 \mathrm{~m}^{2}$
1
2. \quad Linear Scale Factor $=5 \cdot 1 / 1 \cdot 7=3$

Area Scale Factor $=3^{2}$
Cost $=3^{2} \times £ 16.75=£ 150.75$
1
3. Linear Scale Factor $=2 \quad 1$

Volume Scale Factor $=2^{3}=8 \quad 1$
Volume $=150 \times 8=1200 \mathrm{~cm}^{3} \quad 1$
[3 marks]
4. Linear Scale Factor $=2 \cdot 5 / 4 \quad 1$

Volume Scale Factor $=(2 \cdot 5 / 4)^{3} \quad 1$
Cost $=62 \times(2.5 / 4)^{3}=£ 15.14 \quad 1$
Total: 12 marks
1.
(a) 4
4
1
$\sin 1$
$2 x^{0}$
1
(b) 3
1
$\cos 1$
$1 / 2 x^{0} \quad 1$
2. (a) -8 1

$$
\cos \quad 1
$$

$4 x^{\circ} \quad 1$
(b) $\begin{array}{ll}\tan & 1 \\ x^{\circ} & 1\end{array}$
3.

Correct shape correct amplitude correct number of cycles
[3 marks]
4.
(a)

Correct shape
correct amplitude correct translation
(b)

Correct shape
correct amplitude
correct translation

Total: 20 marks

1. (a) $\frac{\sqrt{3}}{2}$

1
(b) 1
(c) $\frac{1}{2}$

1
(d) $-\frac{1}{\sqrt{2}}$
2.
(a) 180°
(b) 72°
(c) 720°
3. (a) $\sin ^{-1}(0 \cdot 839)=57 \cdot 0^{\circ}$
123°
(b) $\quad \cos x^{0}=-\frac{1}{4}$
$\cos ^{-1}\left(\frac{1}{4}\right)=75 \cdot 5^{\circ} \quad 1$
$105^{\circ} \quad 1$
$256^{\circ} \quad 1$
(c) $\tan x^{\circ}= \pm 5 \quad 1$
$\tan ^{-1}(5)=78.7^{\circ} \quad 1$
$101^{\circ} \quad 1$
$259^{\circ} \quad 1$
$281^{\circ} \quad 1$
[11 marks]
4.
(a) $\sin ^{2} x^{\circ}+2 \sin x^{\circ} \cos x^{\circ}+\cos ^{2} x^{\circ}$

$$
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1
$$

1
(b) $\frac{\sin x^{\circ}}{\cos x^{\circ}} \times \sin x^{\circ}$
$\frac{\sin ^{2} x^{\circ}}{\cos x^{\circ}}$
$\frac{1-\cos ^{2} x^{\circ}}{\cos x^{\circ}}$
1

Splits to answer
1

Total: 24 marks

