Pegasys Educational Publishing

CFE National 5 Resource

Unit 1

Expressions and Formulae

Homework Exercises

* Homework exercises covering all the Unit 1 topics
* + Answers
* + Marking Schemes

National 5 Homework - Expressions and Formulae

SURDS

1. Simplify
(a) $\sqrt{147}-5 \sqrt{3}$
(b) $\sqrt{2}(\sqrt{3}+\sqrt{2})-\sqrt{6}$
2. Express $2 \sqrt{5}+\sqrt{20}-\sqrt{45} \quad$ as a surd in its simplest form.
3. Express with a rational denominator $\frac{5}{2 \sqrt{3}}$
4. Express as a fraction with a rational denominator $\frac{5}{4-\sqrt{3}}$
5. In the rectangle $A B C D$, the diagonal $A C$ is 8 cm and the height $B C$ is 4 cm .

(a) Calculate the length of the rectangle, giving your answer as a surd in its simplest form.
(b) Calculate the area of triangle ABC .
6. Find the length of the diagonal, AB , of this rectangle leaving your answer as a surd in its simplest form.

(4)

20 marks

National 5 Homework - Expressions and Formulae

INDICES

1. Simplify $\frac{m^{5}}{m^{3}}$
2. Simplify the expression below, giving your answer with a positive power.

$$
\begin{equation*}
m^{5} \times m^{-8} \tag{2}
\end{equation*}
$$

3. Express

$$
\begin{equation*}
p^{3}\left(p^{2}-p^{-3}\right) \quad \text { in its simplest form. } \tag{2}
\end{equation*}
$$

4. Simplify

$$
\begin{equation*}
\frac{3 a^{2} \times 2 a}{a^{2}} \tag{3}
\end{equation*}
$$

5. Express in its simplest form

$$
\begin{equation*}
\frac{y^{4} \times y}{y^{-2}} \tag{2}
\end{equation*}
$$

6. Evaluate $16^{\frac{3}{4}}$
7. Simplify, expressing your answer with positive indices.

$$
\begin{equation*}
\left(x^{2} y^{4}\right) \div\left(x^{-3} y^{6}\right) \tag{2}
\end{equation*}
$$

8. Simplify

$$
\begin{equation*}
k^{8} \times\left(k^{2}\right)^{-3} \tag{2}
\end{equation*}
$$

9. Express $a^{\frac{2}{3}}\left(a^{\frac{2}{3}}-a^{-\frac{2}{3}}\right)$ in its simplest form.
10. Express $a^{\frac{1}{2}}\left(a+\frac{1}{a}\right) \quad$ in its simplest form.

National 5 Homework - Expressions and Formulae

SCIENTIFIC NOTATION / SIGNIFICANT FIGURES

1. Write the numbers in each of these sentences in standard form.
(a) The mass of the moon is about 79250000000000000000000 kg
(b) The relative density of hydrogen is 0.0000899
2. Write the numbers in each of these sentences in full.
(a) The number of seconds in a decade is about 3.2×10^{8}
(b) The size of a molecule of water is roughly 1×10^{-3}
3. Calculate each of the following, giving your answers in standard form.
(a) $\left(4.2 \times 10^{10}\right) \times\left(3 \times 10^{-2}\right)$
(b) $\frac{4.2 \times 10^{5}}{8 \times 10^{-1}}$
(c) $\frac{\left(3 \cdot 2 \times 10^{2}\right) \times\left(4 \cdot 5 \times 10^{-3}\right)}{3 \times 10^{-6}}$
4. The Earth is 93 million miles from the sun, which is one astronomical unit (AU). The distance from the sun to Jupiter is 5.2 AU .
Calculate the distance in miles from the sun to Jupiter and give your answer in standard form.
5. A company's profit for the year was $£ 1.2 \times 10^{8}$.

Calculate the profit made per day, giving your answer to the nearest $£$.
6. Use your calculator to find the following. Answer correct to 3 significant figures
(a) $8.4 \div(9.6-5 \cdot 7)$
(b) $20 \times(2.1 \div 5.9)$
(c) $\frac{58}{(1 \cdot 2 \times 14)}$
(d) 2500×1.045^{3}
$(1,1,1,1)$

20 marks

National 5 Homework - Expressions and Formulae

ALGEBRAIC EXPRESSIONS with BRACKETS

Multiply out the brackets and simplify in each question.
1.
(a) $3(x+7)+2 x$
(b) $16 y-5(2 y+3)$
(c) $7(s-2)-13$
2.
(a) $x\left(x^{3}+2\right)$
(b) $3 m(8-m)$
(c) $2 y^{2}(w-5 y)$
3.
(a) $\quad 9(a+5)+7(2 a+7)$
(b) $7(y-8)-5(3 y-6)$
$(1,2)$
4.
(a) $\quad(x+4)(x+7)$
(b) $(y-9)(y-3)$
(c) $\quad(s+12)(s-2)$
(d) $(2 a+5)(a+9)$
(e) $(3 w-8)(2 w+1)$
(f) $(4 x-3)^{2}$
5. (a) $(x+1)\left(x^{2}+1\right)$
(b) $(x-2)\left(2 x^{2}-3 x-2\right)$

National 5 Homework - Expressions and Formulae

FACTORISING an ALGEBRAIC EXPRESSION

Factorise each expression in the following:
1.
(a) $y^{2}+5 y$
(b) $4 x^{2}-49$
(c) $5 s^{2}-20$
2.
(a) $x^{2}+10 x+25$
(b) $x^{2}-10 x-24$
(c) $k^{2}+5 k-6$
3.
(a) $12 a^{2}+7 a-12$
(b) $7 w^{2}-2 w-9$
(c) $4 x^{2}-11 x+6$
4.
(a) $12 x^{2}+16 x+4$
(b) $3 m^{2}-6 m-9$
(c) $3-3 x-36 x^{2}$
5. (a) $\begin{array}{ll}x^{5}-81 x & \text { (b) } a^{2}+3 a b+2 b^{2}\end{array}$

National 5 Homework - Expressions and Formulae

COMPLETING the SQUARE

1. Write each of the following quadratic expressions in the form $a(x+b)^{2}+c$:
(a) $x^{2}+6 x-3$
(b) $x^{2}-5 x+1$
(c) $4+8 x-x^{2}$
(d) $1-6 x-x^{2}$
$(2,2,2,2)$
2. Show that the function $f(x)=x^{2}-16 x+7$ can be written in the form $f(x)=(x+p)^{2}+q$ and write down the values of p and q.

Hence state the minimum value of the function and the corresponding value of x.

National 5 Homework - Expressions and Formulae

ALGEBRAIC FRACTIONS

1. Simplify:
(a) $\frac{19}{57}$
(b) $\frac{w^{3}}{w}$
(c) $\frac{5 x}{10}$
(d) $\frac{12 x^{2}}{36 x}$
2. Simplify:
(a) $\frac{(2 x+1)}{(2 x+1)(2 x-1)}$
(b) $\frac{x^{2}+5 x+6}{(x+3)}$
(c) $\frac{x^{2}-x-6}{x^{2}+4 x+4}$
$(1,2,3)$
3. Simplify:
(a) $\frac{m}{5}+\frac{m}{4}$
(b) $\frac{m+4}{2}+\frac{m-3}{5}$
(c) $\frac{4}{x}-\frac{1}{x+3}$
(d) $\frac{x+1}{x+2}+\frac{x-2}{x+1}$
$(1,2,2,3)$
4. Express each of the following in its simplest form.
(a) $\frac{7}{3 k} \times \frac{9 k}{21}$
(b) $\frac{3 x}{5} \times \frac{2}{9 x^{2}}$
(c) $\frac{1}{a^{2}} \div \frac{2}{a}$
(d) $\frac{2 x}{y} \div \frac{4 x^{2}}{3 y}$

25 marks

National 5 Homework - Expressions and Formulae

DETERMINING the GRADIENT of a STRAIGHT LINE given TWO POINTS

1. The line CD passes through the points $(0,5)$ and $(6,0)$

Calculate the gradient of CD.
2. A line passes through the points $\mathrm{A}(-2,-4)$ and $\mathrm{B}(8,1)$.

Find the gradient of the line AB .
3. Prove that the points $A(0,-2), B(-4,4)$ and $C(6,-11)$ all lie on the same straight line.
4. The points $\mathrm{S}(k, 3), \mathrm{T}(10,2)$ and $\mathrm{U}(-2,5)$ are collinear. Find the value of k.
5. Calculate the gradient of a line which is parallel to the line passing through $\mathrm{F}(3,-7)$ and $G(-8,2)$.
6. The line which passes through $(-4,1)$ and $(-7,-11)$ is parallel to the line through $(2, y)$ and $(-3,-3)$. Find the value of y.
7. What is the gradient of the line perpendicular to the line with equation $y=3 x-5$?
8. The line which passes through $(-2,2)$ and $(-6,-4)$ is perpendicular to the line through $(4, b)$ and $(-2,-2)$. Find the value of b.

20 marks

National 5 Homework - Expressions and Formulae

WORKING with the LENGTH of ARC and AREA of a SECTOR of a CIRCLE

Give your answers correct to 3 significant figures where necessary.

1. (a) Find the length of the minor arc AB in this circle.

(b) Calculate the area if the minor sector AOB.
(a) Find the length of the major arc PQ in this circle.
(b) Calculate the area of the major sector POQ.
2. The area of sector OPQ is $100 \mathrm{~cm}^{2}$. Calculate the size of angle, x^{0}, to the nearest degree.

3. Ornamental paving slabs are in the shape of part of a sector of a circle.

Calculate the area of the slab shown.

National 5 Homework - Expressions and Formulae

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

Give your answers correct to 3 significant figures where necessary.
1.

A cone has a base diameter of 16 cm and a height of 17 cm .
Calculate the volume of the cone, giving your answer correct to 3 sig figs.

$$
\begin{equation*}
\text { [Volume of cone } \left.=\frac{1}{3} \pi r^{2} h\right] \tag{3}
\end{equation*}
$$

2. A lead sinker is in the shape of a cone with a hemispherical base.

The total height of the sinker is 12 cm and the diameter of the base is 10 cm
Calculate the volume of lead required to make the sinker.

$$
\text { [Volume of sphere } \left.=\frac{4}{3} \pi r^{3}\right]
$$

3. (a) Calculate the volume of the largest sphere which will fit inside a cube of side 15 cm .
(b) Calculate the volume of wasted space between the two. [Answer to nearest cm^{3}]
4. A pyramid has a square base of side 6 cm and a vertical height of 9 cm .

ANSWERS

National 5 Homework - Expressions and Formulae

SURDS

1.

(a) $2 \sqrt{ } 3$
(b) 2
2. $\sqrt{ } 5$
3. $\frac{5 \sqrt{3}}{6}$
4. $\frac{5(4+\sqrt{3})}{13}$
5. (a) $4 \sqrt{ } 3$
(b) $8 \sqrt{ } 3$
6. $4 \sqrt{ } 3$

National 5 Homework - Expressions and Formulae

INDICES

1. m^{2}
2. $\frac{1}{m^{3}}$
3. $p^{5}-1$
4. $6 a$
5. y^{7}
6. 8
7. $\frac{x^{5}}{y^{2}}$
8. k^{2}
9. $a^{\frac{4}{3}}-1$
10. $a^{\frac{3}{2}}+a^{-\frac{1}{2}}$

National 5 Homework - Expressions and Formulae
SCIENTIFIC NOTATION / SIGNIFICANT FIGURES

1. (a) 7.925×10^{22}
(b) 8.99×10^{-5}
2.

(a) 320000000
(b) 0.001
3.
(a) 1.26×10^{9}
(b) 5.25×10^{5}
(c) $4 \cdot 8 \times 10^{5}$
4. $4 \cdot 836 \times 10^{8}$
5. $£ 328767$
6.
(a) $2 \cdot 15$
(b) $7 \cdot 12$
(c) 3.45
(d) 2850

National 5 Homework - Expressions and Formulae

ALGEBRAIC EXPRESSIONS with BRACKETS

1.

(a) $5 x+21$
(b) $6 y-15$
(c) $7 s-27$
2.
(a) $x^{4}+2 x$
(b) $24 m-3 m^{2}$
(c) $2 y^{2} w-10 y^{3}$
3.
(a) $23 a+94$
(b) $-8 y-26$
4.
(a) $x^{2}+11 x+28$
(b) $y^{2}-12 y+27$
(c) $s^{2}+10 s-24$
(d) $2 a^{2}+23 a+45$
(e) $6 w^{2}-13 w-8$
(f) $16 x^{2}-24 x+9$
5.
(a) $x^{3}+x^{2}+x+1$
(b) $2 x^{3}-7 x^{2}+4 x+4$

National 5 Homework - Expressions and Formulae

FACTORISING an ALGEBRAIC EXPRESSION

1.

(a) $y(y+5)$
(b) $(2 x-7)(2 x+7)$
(c) $\quad 5(s-2)(s+2)$

2
(a) $\quad(x+5)(x+5)$
(b) $(x-12)(x+2)$
(c) $(k+6)(k-1)$
3.
(a) $(4 a-3)(3 a+4)$
(b) $(7 w-9)(w+1)$
(c) $(4 x-3)(x-2)$
4.
(a) $\quad 4(3 x+1)(x+1)$
(b) $3(m-3)(m+1)$
(c) $3(1-4 x)(1+3 x)$
5.
(a) $\quad x\left(x^{2}+9\right)(x-3)(x+3)$
(b) $(a+b)(a+2 b)$

National 5 Homework - Expressions and Formulae

2.3 COMPLETING the SQUARE

1.

(a) $(x+3)^{2}-12$
(b) $(x-2 \cdot 5)^{2}-5 \cdot 25$
(c) $20-(x-4)^{2}$
(d) $10-(x+3)^{2}$
2. $p=-8 ; q=-57$. Minimum value $=-57$ when $x=8$

National 5 Homework - Expressions and Formulae

ALGEBRAIC FRACTIONS

1. (a) $\frac{1}{3}$
(b) w^{2}
(c) $\frac{x}{2}$
(d) $\frac{x}{3}$
2. (a) $\frac{1}{(2 x-1)}$
(b) $(x+2)$
(c) $\frac{x-3}{x+2}$
3.

(a) $\frac{9 m}{20}$
(b) $\frac{7 m+14}{10}$
(c) $\frac{3 x+12}{x(x+3)}$
(d) $\frac{2 x^{2}+2 x-3}{(x+2)(x+1)}$
4.
(b) $\frac{2}{15 x}$
(c) $\frac{1}{2 a}$
(d) $\frac{3}{2 x}$

National 5 Homework - Expressions and Formulae

DETERMINING the GRADIENT of a STRAIGHT LINE given TWO POINTS

1. $-\frac{5}{6}$
2. $\frac{1}{2}$
3. Proof [gradients $-\frac{3}{2}$]
4. $k=6$
5. $-\frac{9}{11}$
6. $y=17$
7. $-\frac{1}{3}$
8. -6

National 5 Homework - Expressions and Formulae

WORKING with the LENGTH of ARC and AREA of a SECTOR of a CIRCLE

1.

(a) 18.1 cm
(b) $72 \cdot 6 \mathrm{~cm}^{2}$
2.
(a) 29.0 cm
(b) $72 \cdot 4 \mathrm{~cm}^{2}$
3. $25 \cdot 3 \mathrm{~cm}$
4. 80°
5. $785 \mathrm{~cm}^{2}$

National 5 Homework - Expressions and Formulae
WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

1. $1140 \mathrm{~cm}^{3}$
2. $445 \mathrm{~cm}^{3}$
3.

(a) $1770 \mathrm{~cm}^{3}$
(b) $1610 \mathrm{~cm}^{3}$
4. $110 \mathrm{~cm}^{3}$

National 5

Surds

1. (a) $7 \sqrt{3}$
$2 \sqrt{3}$
(b) $\sqrt{6}+2-\sqrt{6}$ 2
2. $2 \sqrt{5}+2 \sqrt{5}-3 \sqrt{5}$ $\sqrt{5}$
3. $\frac{5}{2 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

$$
\frac{5 \sqrt{3}}{6}
$$

4. $\frac{5}{4-\sqrt{3}} \times \frac{4+\sqrt{3}}{4+\sqrt{3}}$
$\frac{5(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$
$\frac{5(4+\sqrt{3})}{13}$
5.

(a)	$x^{2}=8^{2}-4^{2}$	1	using Pythagoras	
	$x^{2}=48$			
	$x=\sqrt{48}$	1	finding x	
	$x=\sqrt{16} \sqrt{3}$			
	$x=4 \sqrt{3}$	1	simplifying	[3 marks]
(b)	$\mathrm{A}=1 / 2 b h$			
	$=1 / 2 \times 4 \times 4 \sqrt{3}$		substituting	
	$=8 \sqrt{3}$	1	answer	[2 marks]
$(2 \sqrt{7})^{2}+(2 \sqrt{5})^{2}$		1	using Pythagoras	
$28+20=48$		$1+1$	squaring surds	
$4 \sqrt{3}$		1	simplifying	[4 marks]

Total: 20 marks

National 5

Indices

1. m^{2}
2. m^{-3}
$\frac{1}{m^{3}}$
3. $p^{5}-p^{0}$
$p^{5}-1$
4. 6
a^{3}
$6 a$
5. y^{5}
6. $\sqrt[4]{16^{3}}$

8
7. $x^{5} y^{-2}$
$\frac{x^{5}}{y^{2}}$
8. k^{-6}
k^{2}
9. $a^{\frac{4}{3}}-a^{0}$
$a^{\frac{4}{3}}-1$
10. $a^{\frac{4}{3}}-a^{0}$
$a^{\frac{4}{3}}-1$

Homework Marking Scheme - EF

1 answer
[1 mark]

1 simplifying
1 writing with positive power [2 marks]

1 multiplying brackets
1 simplifying
[2 marks]
$\begin{array}{lll}1 & \text { number } \\ 1 & \text { multiplying letter } \\ 1 & \text { answer } & \text { [3 marks] }\end{array}$
1 simplifying numerator
1 answer
[2 marks]
1 knowing how to find fractional power
1 answer
[2 marks]

1 simplifying

1 writing with positive powers

1 simplifying bracket
1 answer
[2 marks]

$$
4
$$

1 multiplying brackets
1 simplifying
1 multiplying brackets
1 simplifying

Total: 20 marks

1. (a) 7.925×10^{22}
(b) 8.99×10^{-6}
2. (a) 320000000
(b) 0.001
3. (a) 1260000000

$$
1.26 \times 10^{9}
$$

(b) 525000
5.25×10^{5}
(c) 4800000
4.8×10^{5}
4. 93000000×5.2
4.836×10^{8}
5. $1.2 \times 10^{8} \div 365$
£328 767
6.
(a) $2 \cdot 15$
(b) $7 \cdot 12$
(c) $3 \cdot 45$
(d) 2850

1 each part
1 each part
[4 marks]

1 answer
1 answer [2 marks]

1 answer
1 scientific notation
[2 marks]
1 answer
1 scientific notation [2 marks]
1 answer
1 scientific notation
[2 marks]

1 correct calculation
1 answer in scientific notation [2 marks]
1 correct calculation
1 answer correctly rounded [2 marks]
1.
(a) $5 x+21$
1
(b) $6 y-15 \quad 1$
(c) $7 s-27$
1
2.
(a) $x^{4}+2 x \quad 1$
(b) $24 m-3 m^{2} \quad 1$
(c) $2 y^{2} w-10 y^{3} \quad 1$
3.
(a) $23 a+94 \quad 1$
(b) $-8 y-26$
2
[3 marks]
4.
(a) $x^{2}+11 x+28$
1
(b) $y^{2}-12 y+27$
(c) $s^{2}+10 s-24$
1
(d) $2 a^{2}+23 a+45 \quad 1$
(e) $6 w^{2}-13 w-8$
1
(f) $16 x^{2}-24 x+9$

1 [6 marks]
5.
(a) $\quad x^{3}+x$ $x^{2}+1$
1
(b) $2 x^{3}-3 x^{2}-2 x \ldots \ldots$ $-4 x^{2}+6 x+4$ $2 x^{3}-7 x^{2}+4 x+4$
1
1
1 [5 marks]

Total: 20 marks

1. (a) $y(y+5) \quad 1$
(b) $(2 x-7)(2 x+7) \quad 1$ each bracket
(c) $5(s-2)(s+2) 1$ each bracket
2. (a) $\quad(x+5)(x+5)$
(b) $(x-12)(x+2)$
(c) $\quad(x+6)(x-1)$

1 each bracket
1 each bracket
1 each bracket
3. (a) $(4 a-3)(3 a+4)$
(b) $(7 w-9)(w+1)$
(c) $(4 x-3)(x-2)$

1 each bracket
1 each bracket
1 each bracket
[6 marks]
4. (a) $\quad 4(3 x+1)(x+1)$
(b) $3(m-3)(m+1)$
(c) $3(1-4 x)(1+3 x)$
5.
(a) $\quad x\left(x^{2}+9\right)\left(x^{2}-9\right)$
$x\left(x^{2}+9\right)(x-3)(x+3)$
(b) $(a+b)(a+2 b)$

1	common factor
1	common factor
1	brackets
1	common factor
1	brackets

1 common factor
1 brackets
1 difference of 2 squares
1 each bracket
[5 marks]

Total: 28 marks

Correct brackets with signs round the wrong way gains 1 mark.

1. (a) $(x+3)^{2} \ldots \ldots$.
......-12
1
1
(b) $(x-2 \cdot 5)^{2}$ 1
(c) $\ldots .-5 \cdot 25$
(c) $20 \ldots \ldots$.
$-(x-4)^{2}$
(d) 10
$\ldots \ldots . .-(x+3)^{2}$
1
$q=-57$.
Minimum value $=-57$
when $x=8$

1
1 [4 marks]

1. (a) $\frac{1}{3}$
(b) w^{2}
(c) $\frac{x}{2}$
(d) $\frac{x}{3}$

1 each answer
2. (a) $\frac{1}{(2 x-1)}$

1 answer
(b) $\frac{(x+2)(x+3)}{(x+3)}=x+2$

1 factorising numerator
1 cancelling to answer
(c) $\frac{(x-3)(x+2)}{(x+2)(x+2)}=\frac{x-3}{x+2}$

1 factorising numerator
1 factorising denominator
1 cancelling to answer
3. (a) $\frac{9 m}{20}$

1 answer
(b) $\frac{5(m+4)+2(m-3)}{10}$
$=\frac{7 m+14}{10}$
(c) $\frac{4(x+3)-x}{x(x+3)}$

1 correct denominator

$$
=\frac{3 x+12}{x(x+3)}
$$

1 correct numerator
(d) $\frac{(x+1)(x+1)+(x+2)(x-2)}{(x+2)(x+1)}$

1 correct denominator
$=\frac{x^{2}+2 x+1+x^{2}-4}{(x+2)(x+1)}$
1 correct numerator
$=\frac{2 x^{2}+2 x-3}{(x+2)(x+1)}$
1 simplified numerator
4.
(a) 1
(b) $\frac{6 x}{45 x^{2}}$
1 answer
1 multiplying
$=\frac{2}{15 x}$
(c) $\frac{a}{2 a^{2}}$
$=\frac{1}{2 a}$
1 simplifying
1 multiplying
1 simplifying
(d) $\frac{3 y}{4 x^{2}}$

$$
=\frac{3}{2 x}
$$

1 inversion
1 simplifying
[7 marks]
Total: 25 marks

1. $m=-\frac{5}{6}$

1 answer
2. $m=\frac{1+4}{8+2}=\frac{1}{2}$

1 working
1 answer
[2 marks]
3. $m_{A B}=\frac{4+2}{-4+0}=-\frac{3}{2}$

1 gradient
$m_{A B}=\frac{-11-4}{6+4}=-\frac{3}{2}$
$m_{A B}=m_{B C}$ with B a common point so
A, B and C are collinear.
1 conclusion
4. $m_{S T}=\frac{2-3}{10-k}=-\frac{1}{10-k}$
$m_{T U}=\frac{5-2}{-2-10}=-\frac{1}{4}$
$\frac{1}{10-k}=\frac{1}{4}$
$k=6$
5. $m=\frac{2+7}{-8-3}=-\frac{9}{11}$

1 working
1 answer
6. $m=\frac{-11-1}{-7+4}=\frac{-12}{-3}=4$

$$
m=\frac{-3-y}{-3-2}=\frac{-3-y}{-5}
$$

1 gradient

1 gradient

$$
\frac{-3-y}{-5}=4
$$

1 equating gradients

$$
y=17
$$

1 answer
[4 marks]
7. $m_{\text {perp }}=-\frac{1}{3}$ 1 answer
8. $m=\frac{-4-2}{-6+2}=\frac{3}{2} ; m_{\text {perp }}=-\frac{2}{3}$

1 both gradients
$\frac{b+2}{6}=-\frac{2}{3}$
1 equating to perpendicular gradient
$b=-6$
1 answer
[3 marks]

Total: 20 marks

1. (a) $\frac{130}{360} \times 3 \cdot 14 \times 16=18 \cdot 1 \mathrm{~cm}$

1	correct fraction
1	substitution
1	answer

(b) $\frac{130}{360} \times 3 \cdot 14 \times 8^{2}=72 \cdot 6 \mathrm{~cm}^{2}$

1 correct fraction
1 substitution
1 answer
2. (a) $\frac{332}{360} \times 3 \cdot 14 \times 10=29 \cdot 0 \mathrm{~cm}$

1 correct fraction
1 substitution
1 answer
(b) $\frac{332}{360} \times 3 \cdot 14 \times 5^{2}=72 \cdot 4 \mathrm{~cm}^{2}$
3. $\frac{360}{125} \times 8 \cdot 8=25 \cdot 3 \mathrm{~cm}$

1 working
1 answer
4. $\frac{x}{360} \times 3 \cdot 14 \times 144=100$

$$
x=80^{\circ}
$$

1 relevant working
1 answer
5. $\frac{90}{360} \times 3 \cdot 14 \times 35^{2}=962 \mathrm{~cm}^{2}$

$$
\frac{90}{360} \times 3 \cdot 14 \times 15^{2}=\underline{177 \mathrm{~cm}^{2}}
$$

Shaded area $=962-177=\underline{785 \mathrm{~cm}^{2}}$
1 substitution
1 answer
1 substitution and answer
1 answer

Total: 20 marks

National 5

Volumes of Solids

1. $V=\frac{1}{3} \times \pi \times 8^{2} \times 17$
$1140 \mathrm{~cm}^{3}$
2. $\quad V=\frac{1}{3} \times \pi \times 5^{2} \times 7$
$183 \mathrm{~cm}^{3}$
$V=\frac{2}{3} \times \pi \times 5^{3}$
$262 \mathrm{~cm}^{3}$
Total: $\underline{445 \mathrm{~cm}^{3}}$
3. (a) $V=15^{3}=\underline{3380 \mathrm{~cm}^{3}}$ [accept 3375]
4. (a) $V=15^{3}=\underline{3380 \mathrm{~cm}^{3}}$ [accept 3375]
(b) $V=\frac{4}{3} \times \pi \times 7 \cdot 5^{3}$
$\frac{1770 \mathrm{~cm}^{3}}{\text { Wasted space }=\underline{1610 \mathrm{~cm}^{3}}}$
5. $V=\frac{1}{3} \times A \times h$
$V=\frac{1}{3} \times 6 \times 6 \times 9$
$110 \mathrm{~cm}^{3}$

1 correct substitution
1 answer correctly rounded
1 units

1 correct height
1 correct answer
1 correct substitution
1 correct answer
1 answer correctly rounded
$\begin{array}{ll}1 & \text { dimension of } 15 \\ 1 & \text { answer }\end{array}$
1 substitution
1 answer
1 answer correctly rounded
[5 marks]

1 correct formula
1 substitution
1 answer correctly rounded [3 marks]

Total: 16 marks

