2015 Lifeskills Mathematics

National 5 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Lifeskills Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(g) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(h) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(i) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Bad form
- Repeated error within a question

Detailed Marking Instructions for each question

Question		Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •	
1.	.	Ans: No, supported by working - ${ }^{1}$ Process: calculate fraction of - ${ }^{2}$ Communication: state conclusion	2	$\begin{aligned} & \cdot{ }^{1} 3 / 8 \times 280= \\ & \cdot \bullet^{2} 105<110 \end{aligned}$	
Notes: - Correct method with incorrect answer \rightarrow 'correct' conclusion - Use of ' km ' in conclusion instead of 'miles' - Incorrect fraction used eg: $4 / 9 \times 280=124(.444 ..) \rightarrow$ 'enough fuel' - $3 / 9 \times 280=93(.333 ..) \rightarrow$ 'not enough fuel' - Correct conclusion with no working shown - $1 / 2 \times 280=140 \rightarrow$ enough fuel (working significantly eased)					award 1/2 award 2/2 award 1/2 award 1/2 award 1/2 award 0/2

2.		Ans: 0310/3•10am \bulletStrategy: knows how to deal with time zone, flight time and security clearance \bullet2 Process/communication: state	$\mathbf{2}$	
time				

Notes:

- If any two out of the three times are added correctly award $1 / 2$
- An answer of 'pick up from 0310 to 0315 '
award 2/2

Special case:

Candidate subtracts 4 hour time difference instead of adding \rightarrow pick Usain up at 1910
award 1/2

Notes:

- If new and old stock are mixed on the same shelf and all shelves hold $\leq 10 \mathrm{~m}$ award $1 / 2$
- Common incorrect answer:
award 1/2

Shelf 1	A J
Shelf 2	B I
Shelf 3	C D L
Shelf 4	E H
Shelf 5	G F K

Notes:

- $3 \times 330 \mathrm{ml}=1$ litre $\rightarrow £ 1 \cdot 98$ (working significantly eased)
- Correct answer with no working
award 0/2
award 2/2

Notes:

- For: $£ 700-(£ 550+£ 13 \cdot 75)=£ 136 \cdot 25$ award 3/4
- For: $£ 700-£ 550=£ 150$
award 2/4
Some common answers for Alternative Strategy:
- Candidate calculates 2.5% of $£ 150=£ 3.75 \rightarrow £ 150+£ 3.75=£ 153.75$ award $3 / 4$
- Candidate calculates the fee per share to be $£ 0 \cdot 06875$ then rounds to $£ 0 \cdot 07$ leading to a loss of $£ 164$ (premature rounding penalised)
award 3/4

Notes:

- If candidate finds $100^{2}+80^{2} \rightarrow$ an answer of 456 cm , so not enough ribbon, award 3/4
- Minimum working for $3^{\text {rd }}$ mark: Correct answer to $100+100+(2 \times$ their 'length' of half the base)
- For: $3 \times 100=300 \mathrm{~cm} \rightarrow$ enough ribbon as $300 \mathrm{~cm}<3.5 \mathrm{~m}$
award 1/4
- For a conclusion of, eg,' enough ribbon as $3 \cdot 5 \mathrm{~m}>3 \cdot 2 \mathrm{~m}$, so she has 3 m extra', disregard the subsequent incorrect calculation of extra length of ribbon

8.			Ans: Rule 1: Yes as 640 is upper limit of tolerance Ans: Rule 2: No as $17 / 30>1 / 2$ - ${ }^{1}$ Strategy: know to check both rules - ${ }^{2}$ Process: find $2 \times$ riser + tread - ${ }^{3}$ Communication: within tolerance, so passes rule 1 - ${ }^{4}$ Process: calculate gradient - ${ }^{5}$ Communication: shows that gradient > $1 / 2$, so fails rule 2	5	- ${ }^{1}$ evidence - ${ }^{2} 2 \times 170+300=640$ $\bullet^{3} 625 \pm 15$; range 610-640; 640 is within this range - ${ }^{4} 170 / 300$ or equivalent - ${ }^{5} 170 / 300>1 / 2$, so fails rule 2

Notes:

- For $3^{\text {rd }}$ mark, limits do not need to be stated explicitly
- For $3^{\text {rd }}$ mark, do not penalise error in calculation of lower limit
- $\mathrm{G}=\mathrm{V} / \mathrm{H}$ or equivalent is not sufficient to show that rule 2 has been considered

Special case: When candidate only considers one of the rules.

A: If candidate has correctly found the gradient and correctly used equivalent fractions to compare it with $1 / 2$.
In this case if the conclusion states:
'Fails rule 2 so both rules not met'
award 5/5
'Fails rule 2.' (no mention of both rules)
award 2/5
B: If candidate only considers $2 \times$ tread + height, but miscalculates so that the answer is outwith tolerance.
In this case if conclusion states:
'Fails rule 1, so both rules not met'
award 4/5
'Fails rule 1' (no mention of both rules)

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each \bullet
9.	(a)	Ans: $£ 360$ $\bullet 1$	1 Process: correct total	

Notes:

| (b) | Ans: $\mathbf{£ 1 6 5 \cdot 5 0}$
 \bullet • Strategy: knows how to
 calculate finance package | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| \bullet^{2} Process: calculate deposit | | |
| \bullet^{3} Process: find total finance | | |
| package | | |
| $\bullet 4$ Communicate: state extra cost | | |

Notes:

- If candidate finds 10% of answer to (a), instead of 10% of $£ 455$ then a maximum of $3 / 4$ is available
Eg $12 \times £ 40+10 \%$ of $£ 360=£ 516$
$£ 516-£ 360=£ 156$

10.	(a)	Ans: $\mathbf{2 3 7} \cdot \mathbf{1 2 m}^{2}$ - ${ }^{1}$ Strategy: find radius of semicircle - ${ }^{2}$ Process: calculate area of semi-circle - ${ }^{3}$ Process: calculate remaining area - ${ }^{4}$ Process: calculate total area	4	$\bullet^{1} r=4$ $\cdot \bullet^{2} A=1 / 2 \times 3 \cdot 14 \times 4^{2}=25 \cdot 12$ $\bullet^{3} A=18 \times 12-2 \times 2=212$ $\cdot{ }^{4} A=212+25 \cdot 12=237 \cdot 12$

Notes:

- ${ }^{1}$ may be implied by • ${ }^{2}$

A common incorrect response:
If radius taken as $3 \mathrm{~m} \rightarrow \mathrm{~A}=1 / 2 \times 3 \cdot 14 \times 3^{2}=14 \cdot 13 \rightarrow 212+14 \cdot 13=226 \cdot 13 \mathrm{~m}^{2}$

| (b) | Ans: $£ 4077$
 $\bullet{ }^{1}$ Strategy: find minimum
 number of packs
 \bullet^{2} Process: calculate cost | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- |
| $\bullet^{1} 237 \cdot 12 \div 4=59 \cdot 28$ | | | |
| Therefore 60 packs required | | | |
| $\bullet^{2} 60 \times £ 67 \cdot 95=£ 4077$ | | | |

Notes:

- If answer to (a) is a multiple of 4, the $1^{\text {st }}$ mark is not available
- If answer to (a) is $226 \cdot 13 \mathrm{~m}^{2}$, correct follow through would be $57 \times £ 67 \cdot 95=£ 3873 \cdot 15$

2015 Lifeskills Mathematics

National 5 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Lifeskills Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(g) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(h) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(i) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Bad form
- Repeated error within a question

Detailed Marking Instructions for each question

Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
(b)	When 8 cm is taken as the height of the triangle. Ans: No, supported by working - ${ }^{1}$ Strategy: attempt to express area of logo as a percentage of area of rectangle - ${ }^{2}$ Process: calculate areas of rectangle and triangle - ${ }^{3}$ Process: calculation of percentage - ${ }^{4}$ Communication: conclusion consistent with working	4	- ${ }^{1}$ Evidence $\begin{array}{r} \cdot{ }^{2} 22 \times 16=352 \\ \quad 1 / 2 \times 7 \times 8=28 \end{array}$ - ${ }^{3} 28 \div 352 \times 100=7.9545 \ldots$ - ${ }^{4}$ No, logo is 8% which is less than the necessary 9\%
	When 8 cm is taken as the sloping side of triangle Ans: No, supported by working - ${ }^{1}$ Strategy: attempt to express area of logo as a percentage of area of rectangle - ${ }^{2}$ Process: calculate areas of rectangle and triangle - ${ }^{3}$ Process: calculation of percentage - ${ }^{4}$ Communication: conclusion consistent with working		- ${ }^{1}$ Evidence $\begin{aligned} & \bullet^{2} 22 \times 16=352 \\ & \quad \text { Height }=\int\left(8^{2}-3 \cdot 5^{2}\right)=7 \cdot 19 \ldots \\ & 1 / 2 \times 7 \times 7 \cdot 2=25 \cdot 2 \\ & \bullet^{3} 25 \cdot 2 \div 352 \times 100=7 \cdot 159 \ldots \end{aligned}$ - ${ }^{4}$ No, logo is 7% which is less than the necessary 9\%
	Alternative Strategy 1: Dimensions of poster are used instead of the flier: - ${ }^{1}$ Strategy: attempt to express area of logo as a percentage of area of rectangle - ${ }^{2}$ Process: calculate areas of rectangle and triangle -3 Process: calculation of percentage - ${ }^{4}$ Communication: conclusion consistent with working		- ${ }^{1}$ Evidence - ${ }^{2} 77 \times 56=4312$ $1 / 2 \times 24 \cdot 5 \times 28=343$ $\bullet^{3} 343 \div 4312 \times 100=7.9545 \ldots$ - ${ }^{4}$ No, logo is 8% which is less than the necessary 9\%

Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
	Alternative Strategy 2: Comparing areas on flier: - ${ }^{1}$ Strategy: attempt to compare area of logo with required limits - ${ }^{2}$ Process: calculate areas of rectangle and triangle - ${ }^{3}$ Process: calculation of percentage - ${ }^{4}$ Communication: conclusion consistent with working		- ${ }^{1}$ Evidence $\begin{array}{r} \cdot \bullet^{2} 22 \times 16=352 \\ 1 / 2 \times 7 \times 8=28 \end{array}$ - ${ }^{3} 12 \%$ of $352=42 \cdot 24$ 9% of $352=31 \cdot 68$ - ${ }^{4}$ No, as area is $28 \mathrm{~cm}^{2}$, which is less than 9% of the total area.
	Alternative Strategy 3: Comparing areas on poster: - ${ }^{1}$ Strategy: attempt to compare area of logos with required limits - ${ }^{2}$ Process: calculate areas of rectangle and triangle - ${ }^{3}$ Process: calculation of percentage - ${ }^{4}$ Communication: consistent conclusion		- ${ }^{1}$ Evidence $\cdot \begin{aligned} & \cdot 27 \\ & \quad 1 / 2 \times 24 \end{aligned} \times 43 \times 28=343$ - ${ }^{3} 12 \%$ of $4312=517 \cdot 44$ 9% of $4312=388.08$ - ${ }^{4}$ No, as area is $343 \mathrm{~cm}^{2}$, which is less than 9% of the total area.
Notes: - In alternative strategies $2 \& 3$, the value of 12% of the area need not be stated explicitly			

Question	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
(b)	Ans: 2099 (mm) - ${ }^{1}$ Strategy/process: calculate the diameter - ${ }^{2}$ Process: calculate circumference - ${ }^{3}$ Communication: round to nearest millimetre	3	$\cdot{ }^{1} 23+622+23=668$ $\bullet^{2} \mathrm{C}=\pi \times 668=2098 \cdot 58 \ldots$ $\bullet^{3} 2099$
Notes: - Accept legitimate variations for value of π - Unrounded answer need not be stated - 2099 mm with no working - 2098 mm with no working - 2097 mm with no working			
Some common answers: (incorrect diameter used) Working must be shown - $\mathrm{d}=645$ (only one tyre width added) $\rightarrow \mathrm{C}=2026 \mathrm{~mm}$ - $\mathrm{d}=622$ (no tyre width added) $\rightarrow \mathrm{C}=1954 \mathrm{~mm}$ - $d=334$ (radius of wheel plus tyre) $\rightarrow C=1049 \mathrm{~mm}$ - $\mathrm{d}=311$ (radius of wheel only) $\rightarrow \mathrm{C}=977 \mathrm{~mm}$			award 2/3 award $2 / 3$ award 2/3 award 1/3

	tion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
3.	(a)	Ans:£1100 - ${ }^{1,2}$ Strategy/Process: extract information and calculate cost of slates (Award $1 / 2$ if there is 1 missing or incorrect step) - ${ }^{3}$ Communication: round to nearest $£ 100$	3	
	$\begin{aligned} & \text { Co } \\ & \text { Un } \end{aligned}$	answer with no working ded answer need not be shown		award 0/3
	(b)	Ans: £836 - ${ }^{1}$ Strategy: know how to calculate total - ${ }^{2}$ Process: calculate labour costs	2	$\begin{aligned} & \cdot{ }^{1}(8 \times 22)+(15 \times 2 \times 22) \\ & \bullet^{2} 836 \end{aligned}$

Notes:

- $2^{\text {nd }}$ mark is only available if there is clear evidence that 'strip and clean' and 'replace slates' have been considered
- $8 \times 22=£ 176$
- $8 \times 22+1 \times 22=198$ (only 1 hour to replace the tiles)
award 0/2

Notes:

	ion	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
4.	(a)	Ans: Route correctly drawn - ${ }^{1}$ Process: calculate distance for legs - ${ }^{2}$ Process: calculate scale distance - ${ }^{3}$ Process/communication: correct bearing measured $\&$ correct length drawn - ${ }^{4}$ Process/communication: 2nd bearing and length correctly drawn	4	- ${ }^{1} 170 \times 0 \cdot 6=102$ $170 \times 1 \cdot 2=204$ ${ }^{2}{ }^{2} 102 \div 20$ rep by $5 \cdot 1 \mathrm{~cm}$ $204 \div 20$ rep by $10 \cdot 2 \mathrm{~cm}$ - Bearing of $050^{\circ}\left(\pm 2^{0}\right)$ measured correctly and 51($\pm 2) \mathrm{mm}$ line drawn \bullet^{4} Bearing of $190^{0}\left(\pm 2^{0}\right)$ measured correctly and 102(± 2) mm line drawn
		Alternative award of marks - ${ }^{1}$ Process: calculate distance and scaled distance for first leg ${ }^{2}{ }^{2}$ Process: calculate distance and scaled distance for second leg - ${ }^{3}$ Process/communication: both bearings drawn correctly - ${ }^{4}$ Process/communication: 2nd bearing and length correctly drawn		- ${ }^{1} 170 \times 0 \cdot 6=102 \rightarrow 102 \div 20$ rep by $5 \cdot 1 \mathrm{~cm}$ - ${ }^{2} 170 \times 1 \cdot 2=204 \rightarrow 204 \div 20$ rep by 10.2 cm - ${ }^{3}$ Both bearings of $050^{\circ}\left(\pm 2^{0}\right)$ and $190^{\circ}\left(\pm 2^{\circ}\right)$ measured correctly - ${ }^{4}$ Both distances of $51(\pm 2) \mathrm{mm}$ and $102(\pm 2) \mathrm{mm}$ drawn correctly

Notes:

- The third leg of the journey need not be actually drawn

| (b) | Ans: $342^{0}, \mathbf{1 4 2}$ miles
 $\bullet{ }^{1}$ Process: correct bearing
 \bullet^{2} Process: correct distance in
 miles | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- |
| $\bullet^{1} 342^{0}$ | | | |
| $\bullet^{2} 142$ miles | | | |

Notes:

- It must be clear from the diagram which line represents the third leg of the journey

Question	ion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each -
	c)	Ans: £172.03 - ${ }^{1}$ Process: calculates total distance - ${ }^{2}$ Process: calculates total time taken as a decimal - ${ }^{3}$ Strategy: knows how to find total cost of fuel used - ${ }^{4}$ Process: calculates fuel cost	4	- ${ }^{1} 102+204+142=448$ miles - ${ }^{2} 448 \div 170=2 \cdot 6352 \ldots$ hours - ${ }^{3}$ evidence of time $\times 32 \times £ 2.04$ ${ }^{4} 2 \cdot 6352 \ldots \times 32 \times 2.04=172.03$
		Alternative Strategy: - ${ }^{1}$ Process: calculates time for final leg - ${ }^{2}$ Process: calculates total time taken as a decimal - ${ }^{3}$ Strategy: knows how to find total cost of fuel used - ${ }^{4}$ Process: calculates fuel cost		- ${ }^{1} 142 \div 170=0 \cdot 8352 \ldots$...hours $\bullet^{2} 0 \cdot 6+1 \cdot 2+0 \cdot 8235 \ldots=2 \cdot 6352 \ldots$ hours - ${ }^{3}$ evidence of time $\times 32 \times £ 2.04$ - ${ }^{4} 2 \cdot 6352 \ldots \times 32 \times 2 \cdot 04=172 \cdot 03$
Notes: - - S	Whe not Spec to 1	candidate rounds their time to f able ase: Where the candidate's answ mal place, all 4 marks are still a	r than to (b) able	cimal places, the final mark is s to a decimal time that is exact

Question			Expected Answer(s)	Max Mark	Illustrations of evidence for
5.	(a)	(i)	$\begin{aligned} & \text { Ans: } Q_{2}=(£) 17 \cdot 50 \\ & Q_{1}=(£) 9 \cdot 50, Q_{3}=(£) 21 \end{aligned}$ - ${ }^{1}$ Communication: correct median - ${ }^{2}$ Communication: upper and lower quartiles	2	$\begin{aligned} & \cdot{ }^{1} Q_{2}=17 \cdot 50 \\ & \cdot{ }^{2} Q_{1}=9 \cdot 50, Q_{3}=21 \end{aligned}$
		(ii)	Ans: Boxplot drawn correctly showing 5 -fig summary - ${ }^{1}$ Communication: correct end points - ${ }^{2}$ Communication: correct box	2	- ${ }^{1}$ end points at 5 and 34 ${ }^{\cdot}{ }^{2}$ box showing Q_{1}, Q_{2}, Q_{3}
Notes: - The box plot must be drawn to a consistent scale					
	(b)	(i)	Ans: $\bar{x}=(£) \mathbf{2 0}$ - ${ }^{1}$ Process: calculate mean	1	- ${ }^{1} \bar{x}=20$
		(ii)	Ans: $s=(£) 3 \cdot 16$ - ${ }^{1}$ Process: calculate $(x-\bar{x})^{2}$ - ${ }^{2}$ Process: substitute into formula - ${ }^{3}$ Process: calculate standard deviation	3	$\begin{aligned} & \bullet 14,16,25,1,4,0 \\ & \bullet{ }^{2} \sqrt{\frac{50}{5}} \\ & \cdot{ }^{3} 3 \cdot 16 \end{aligned}$
			Use of alternative formula: - ${ }^{1}$ Process: calculate Σx and Σx^{2} - ${ }^{2}$ Process: substitute into formula - ${ }^{3}$ Process: calculate standard deviation		- ${ }^{1} 120$ and 2450 $\cdot 2 \sqrt{\frac{2450-\frac{(120)^{2}}{6}}{5}}$ $\bullet^{3} 3 \cdot 16$
Notes - For correct answer without working					

Question	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
(c)	Ans: 2 valid comments - ${ }^{1}$ Communication: comment regarding the mean - ${ }^{2}$ Communication: comment regarding the s.d.	2	- ${ }^{1}$ On average there is more profit being made this year - ${ }^{2}$ There is more variation in profit this year
Notes			
(d)	Ans: No, as 23% < 25% - ${ }^{1}$ Process: calculate percentage change ${ }^{2}$ Communication: state increase	2	$\begin{array}{r} \cdot 120-16 \cdot 25=3 \cdot 75 \\ \frac{3 \cdot 75}{16 \cdot 25} \times 100=23 \% \end{array}$ - ${ }^{2}$ No, as 23% < 25%
	Alternative Strategy: Ans: No, as $£ 20 \cdot 31$ > $£ 20$ - ${ }^{1}$ Process: calculate 25% increase in mean - ${ }^{2}$ Communication: conclusion		- ${ }^{1} 16 \cdot 25 \times 1 \cdot 25=20 \cdot 31$ - ${ }^{2}$ No, as $20 \cdot 31>20$
Notes - If the candidate incorrectly finds that the mean has increased by more than 25% and makes the conclusion 'no as it is more than 25% increase'			

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each \bullet
6.	(a)	Ans: It is higher (16•8>16.5) \bullet •1 Strategy: selects correct row and discards highest and lowest scores \bullet^{2} Process: calculate mean	4	

Notes:

- If candidate uses the scores in the bottom row of the table 'correctly' and concludes that both divers have equal final scores
award 3/4

Notes:

- For final answer of 3.27 or 3.275
award 3/3
- When a trial and improvement method has been used and the candidate finds the correct answer at the first attempt
eg $8.6 \times 3 / 5 \times 3.3=17.028$ leading to 3.3 with no further 'trials' award $3 / 3$

Question		Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
	(ii)	Ans: 8.3 - ${ }^{1}$ Strategy: know order of calculations - ${ }^{2}$ Process: calculate score before difficulty factor - ${ }^{3}$ Process: find the mean score	3	- ${ }^{1}$ evidence of $\div 3.4 \times 5 / 3$ - ${ }^{2} 16 \cdot 9 \div 3 \cdot 4=4.97 \ldots$ - ${ }^{3} 4.97 \times 5 / 3=8.3$
		Alternative Strategy: Trial and improvement: - ${ }^{1}$ Strategy: consider at least 2 possible values - 2 Process: consider at least 2 more possible values - ${ }^{3}$ Communication: state level of difficulty		- ${ }^{1}$ evidence of any 2 attempts to find mean - ${ }^{2}$ evidence of at least 2 further attempts to find difficulty which are better than the first 2 - ${ }^{3}$ Find correct mean of $8 \cdot 3$
Notes: - When a trial and improvement method has been used and the candidate finds the correct answer at the first attempt eg $8.3 \times 3 / 5 \times 3.4=16.932$ leading to 8.3 with no further 'trials' award $3 / 3$ - If candidate chooses any mean from $8 \cdot 3$ to 10 inclusive and demonstrates that this would give Cheryl a winning score eg $3 \div 5 \times 8.5 \times 3.4=17 \cdot 34$, so 8.5 is enough award 3/3				
(c)		Ans: Yes as $7>6.75$ - ${ }^{1}$ Strategy: attempt to calculate the volume of a prism - ${ }^{2}$ Process: set up calculation - ${ }^{3}$ Process: calculate volume - ${ }^{4}$ Communication: state conclusion	4	- ${ }^{1}$ evidence of cuboid + prism or Ah - ${ }^{2} 3 \times 6 \times .25+1 / 2 \times 6 \times 0.25 \times 3$ or $(1 / 2 \times 6 \times 0.25+6 \times 0.25) \times 3$ - ${ }^{3} 6.75 \mathrm{~m}^{3}$ - ${ }^{4}$ Yes as $7>6 \cdot 75$
Notes: - If total surface area is calculated: $2^{\text {nd }}$ mark can be awarded for correct areas of any 4 faces $3^{\text {rd }}$ mark can be awarded for the correct areas of the remaining 2 faces and the total ($42 \cdot 78 \mathrm{~m}^{2}$) $4^{\text {th }}$ mark can be awarded for valid comparison of the calculated area and $7 \mathrm{~m}^{3}$				

