2017 Lifeskills Mathematics

National 5 Paper 1

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Lifeskills Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

This is a transcription error and so the mark is not awarded.	$x^{2}+5 x+7=9 x+4$
Eased as no longer a solution of a quadratic equation so mark is not awarded.	$x^{2}+5 x+7=9 x+4$
Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.	$\begin{aligned} x-4 x+3 & =0 \\ (x-3)(x-1) & =0 \\ x & =1 \text { or } 3 \end{aligned}$

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
\bullet^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Notes:

1. Any attempted unit conversions must be correct for award of \bullet

Commonly Observed Responses :

1. For $(194 \times 50)-2$ leading to 9698 .
award $1 / 2 \times \checkmark$
2. For $(194+2) \times 50$ leading to 9800 .
award $1 / 2 \times \checkmark$
3. For 194×50 leading to 9700 . award 0/2 xx

	uest	Generic scheme	Illustrative scheme	Max mark
2.	(a)	Ans: (£)2600 - ${ }^{1}$ Strategy: know to calculate $2 \cdot 5 \%$ of $£ 6000$ - ${ }^{2}$ Process: calculate $2 \cdot 5 \%$ of $£ 6000$ - ${ }^{3}$ Strategy/process: add commission to basic salary	- ${ }^{1}$ evidence ${ }^{2}{ }^{2} 150$ - ${ }^{3} 2600$	3

Notes:

1. Accept $6000 \div 2 \cdot 5$ as evidence of knowing to calculate $2 \cdot 5 \%$.
2. \bullet^{3} is only available for adding commission to $£ 2450$.

Commonly Observed Responses:

1. For $2 \cdot 5 \%$ of $£ 9000=£ 225$ leading to a final answer of $£ 2675$.
award 2/3 $\times \checkmark \checkmark$
2. For $2 \cdot 5 \%$ of $£ 2450=£ 61 \cdot 25$ leading to a final answer of $£ 2511 \cdot 25$.
award 2/3 $\times \checkmark \checkmark$
3. For $2 \cdot 5 \%$ of $£ 3000=£ 75$ leading to a final answer of $£ 2525$.
award 2/3 $\times \checkmark \checkmark$
4. For $2 \cdot 5 \%$ of $£(9000-2450)=£ 163 \cdot 75$ leading to a final answer of $£ 2613 \cdot 75$.
award 2/3 $\times \checkmark \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)	Ans: (£) $\mathbf{1 8 7 0 \cdot 3 9}$ - ${ }^{1}$ Strategy: attempt to calculate gross pay - total deductions - ${ }^{2}$ Process: calculate net pay	- ${ }^{1}$ evidence $\bullet^{2} 1870 \cdot 39$	2

Notes:

1. For reference: total deductions $=729.61$

Commonly Observed Responses:

1. For candidates who calculate a gross salary in part (a) of $£ 2675$ leading to a net pay of £1945•39. award 2/2 $\checkmark \checkmark$
2. For candidates who calculate a gross salary in part (a) of $£ 2511 \cdot 25$ leading to a net pay of $£ 1781 \cdot 64$.
award 2/2
3. For candidates who calculate a gross salary in part (a) of $£ 2525$ leading to a net pay of £1795•39. award 2/2 $\checkmark \checkmark$
4. For candidates who calculate a gross salary in part (a) of $£ 2613.75$ leading to a net pay of $£ 1884 \cdot 14$. award 2/2

Question		Generic scheme	Illustrative scheme						Max mark
3.	(a)	Ans: Points plotted correctly - ${ }^{1}$ Communication: 4 points correct -2 Communication: all 6 points correct	D	${ }_{40}$	110	120	160	$\begin{array}{l\|l} \hline 200 & 260 \\ \hline 220 & 275 \\ \hline \end{array}$	2
Notes: 1. If candidate inverts all coordinates award 1/2									
Commonly Observed Responses:									
	(b)	Ans: Line of best fit - ${ }^{1}$ Strategy: consistent line of best fit	- ${ }^{1}$						

Notes:

Commonly Observed Responses:

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { (c) } & \begin{array}{l}\text { Ans: (days) } \\ \bullet \begin{array}{l}\text { Communication: answer } \\ \text { consistent with line of best fit }\end{array}\end{array} & \bullet 1\end{array}\right\} 1$

Notes:

1. Accept answer rounded to the nearest 10 days.

Commonly Observed Responses:

Notes:

1. For $1 \cdot 6 / 8$ followed by " $N o$ " with no other working. award 1/3
2. For $1 \cdot 6 / 8=5$ followed by blue gradient $6 \cdot 666 \ldots$... leading to "Yes". award 2/3
3. $\quad \bullet^{2}$ can only be awarded for two gradients with the same denominator, or the same numerator, or for two decimal fractions.
4. $\quad{ }^{3}$ can only be awarded where two gradients with the same denominator, or the same numerator, or for two decimal fractions have been compared.
5. Special case: If a candidate's answer for new trail is a top heavy fraction only \bullet^{3} is available. This mark is only available if reference is made to a gradient from the table.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	Ans: Bands D and A - ${ }^{1}$ Communication: state bands required	- ${ }^{1} 10 \times 14+1=141$, she needs bands D and A	1
Notes: 1. Bands D and A without working 2. For 140 lbs leading to bands D and A 3. D and A circled on the table 4. Accept $10 \times 14=141$ bands D and A (treat as bad form) 5. For any incorrect calculation leading to bands D and A				$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 0 / 1 \end{aligned}$
Commonly Observed Responses:				
	(b)	Ans: Shop 2 - ${ }^{1}$ Process: calculate cost for shop 1 -2 Process: calculate cost for shop 2 - ${ }^{3}$ Communication: conclusion consistent with working	- ${ }^{1} 49 \cdot 50$ - ${ }^{2} 45 \cdot 48$ - ${ }^{3}$ Shop 2	3
		Alternative Strategy: - ${ }^{1}$ Process: calculate discount for 1 shop -2 Process: calculate discount for other two shops - ${ }^{3}$ Communication: conclusion consistent with working	- ${ }^{1} 26 \cdot 30$ or $30 \cdot 32$ or $27 \cdot 81$ - ${ }^{2}$ remaining two - ${ }^{3}$ Shop 2	

Notes:

1. - ${ }^{3}$ can only be awarded for comparing 3 costs or 3 discounts.

Commonly Observed Responses:

1. Shop $1 £ 49 \cdot 50$, Shop $2 £ 30 \cdot 32$, Shop $3 £ 47 \cdot 99$ leading to conclusion Shop 2
award $1 / 3 \checkmark \times x$

Question		Generic scheme	Illustrative scheme	Max
6.		Ans: (£)6 286500 -1 Strategy/process: calculate one(£1)share -2 Process: calculate total number of shares - 3 Process: calculate total amount	${ }^{1} 2794000 \div 4=698500$ $\bullet^{2} 2 \cdot 50+2 \cdot 00+4 \cdot 00+0 \cdot 50=9$ $\bullet^{3} 9 \times 698500=6286500$	3
		Alternative Strategy 1 - ${ }^{1}$ Strategy/process: calculate one (50p) share -2 Process: calculate total number of shares - ${ }^{3}$ Process: calculate total amount	${ }^{1} 2794000 \div 8=349250$ $\cdot^{2} 1+4+5+8=18$ $\bullet^{3} 18 \times 349250=6286500$	
		Alternative Strategy 2 -1 Strategy/process: calculate the amount for any teacher other than Mr Young -2 Process: calculate the amount for another teacher -3 Process: calculate amount for final teacher and total amount	- ${ }^{1}$ Miss Smith 1397000 or Mr Jones 349250 or Mr Ross 1746250 - ${ }^{2}$ either of remaining two $\begin{aligned} & \bullet^{3} 1397000+349250+1746250 \\ & \quad+2794000=6286500 \end{aligned}$	

Notes:

1. \bullet^{2} can be implied by subsequent working.

Commonly Observed Responses:

1. For $2794000 \div 9=310444 \cdot 44$
$310444 \cdot 44 \times 4=1241777 \cdot 76$.
award 2/3 $\times \checkmark \checkmark$

Question		Generic scheme	Illustrative scheme	Max
7.	(a)	Ans: $20\left(\mathrm{~cm}^{2}\right)$ - ${ }^{1}$ Strategy: know how to calculate composite area - ${ }^{2}$ Process: calculate area	- ${ }^{1}$ Evidence of any valid strategy $\cdot^{2} \text { eg } 24-4=20$	2

Notes:

1. Accept $8+2 \times 2=20$ as bad form.

Commonly Observed Responses:

1. For $2 \times 8+1 \times 4+1 \times 4=24$.
award $1 / 2 \checkmark x$
2. For calculation of two rectangles eg $4 \times 3+4 \times 2=20$
award $1 / 2 \times \checkmark$

Notes:

1. If the cost of the enamel is not considered then only \bullet^{1} is available.
2. In the alternative strategy, if the candidates answer to \bullet^{2} is not divisible by $9, \bullet^{3}$ is only available for an answer rounded or truncated to 2 decimal places.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.		Ans: $\frac{12}{100}\left(=\frac{3}{25}\right)$ - ${ }^{1}$ Strategy: evidence of identifying the blood groups that B+ can help -2 Communication: interpret stacked bar chart -3 Process: calculate fraction	- ${ }^{1}$ eg $A B+$ and $B+$ - ${ }^{2} 3$ people $A B+$ and 9 people $B+$ - $3 \frac{3+9}{100}=\frac{12}{100}\left(=\frac{3}{25}\right)$	3

Notes:

1. Correct answer with no working.
award 3/3
2. Accept $0 \cdot 12,12 \%$ or any fraction equivalent to $\frac{12}{100}$
3. For any answer other than $\frac{12}{100}, \frac{62}{100}, \frac{15}{100}, \frac{9}{100} \& \frac{3}{100}$, with no working award $0 / 3$

Commonly Observed Responses:

1. For an answer of $\frac{62}{100}$ ($B+$ row is taken from the chart instead of the $B+$ column) (with no working) award 2/3 $\times \checkmark \checkmark$
2. For an answer of $\frac{15}{100}$ (the complete bars for $A B$ and B are taken from the chart) (with no working) award $2 / 3 \times \checkmark \checkmark$
3. For an answer of $\frac{9}{100} \quad(B+$ only $)$ award 1/3
4. For an answer of $\frac{3}{100} \quad(A B+$ only $)$ award 1/3

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	Ans: $\mathbf{2 7 . 4 2 (c m)}$ - ${ }^{1}$ Strategy: correct substitution in Pythagoras' Theorem -2 Process: calculate the missing side - ${ }^{3}$ Process: calculate length of the semi-circle - ${ }^{4}$ Process: calculate the perimeter of the shape	- ${ }^{1}$ eg $10^{2}-6^{2}$ $\bullet^{2} x=8$ ${ }^{-3} 3 \cdot 14 \times 6 \div 2=9.42$ $\cdot{ }^{4} 10+8+9 \cdot 42=27 \cdot 42$	4

Notes:

1. \bullet^{1} and \bullet^{2} are available for correct answer without working (Pythagorean triple).
2. \bullet^{1} cannot be awarded if candidate writes $6^{2}-10^{2}$.
3. \bullet^{2} can be awarded if candidate writes $6^{2}-10^{2}$ leading to $x=8$.
4. $\quad \bullet^{4}$ is only available for adding 10 to two previously calculated lengths.
5. \bullet^{4} is not available if the candidate states that they are adding calculated areas.

Commonly Observed Responses:

1. For $3 \cdot 14 \times 6+10+8$ leading to a final answer of $36 \cdot 84$. award 3/4 $\checkmark \checkmark \times \checkmark$
2. For $\frac{1}{2} \times 3 \cdot 14 \times 3^{2}+10+8$ leading to a final answer of 32•31. award 3/4 $\checkmark \checkmark \times \checkmark$
3. For $3 \cdot 14 \times 3^{2}+10+8$ leading to a final answer of 46•26. award 3/4 $\checkmark \checkmark \times \checkmark$
4. For $\frac{1}{2} \times 3 \cdot 14 \times 6+10+8+6+6$ leading to a final answer of $39 \cdot 42$ award $3 / 4 \checkmark \checkmark \checkmark \times$

Question		Generic scheme	Illustrative scheme	Max
9.	(b)	Ans: $13.56\left(\mathrm{~cm}^{2}\right)$ -1 Strategy: know how to calculate area of rectangular strip - ${ }^{2}$ Process: calculate the area of the strip	- ${ }^{1}$ evidence $\cdot{ }^{2}(27.42-0.3) \times \frac{1}{2}=13.56$	2

Notes:

1. $\bullet{ }^{1}$ is available for evidence of subtracting 0.3 and then multiplying by 0.5

Commonly Observed Responses:

1. For $27.42 \times \frac{1}{2}=13.71$ award $1 / 2 \times \checkmark$
2. For $0.3 \times 0.5=0.15$ award 0/2 xx

2017 Lifeskills Mathematics

National 5 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2017
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Lifeskills Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely illustrative scheme and generic scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (\mathbf{j}).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
\bullet^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{\bullet 5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{\bullet 5} x=2$ and $y=5$

$$
{ }^{\bullet} y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.		Ans: $2309 \mathrm{~cm}^{3}$ or 2309 ml or $2 \cdot 3091$ - ${ }^{1}$ Strategy: know how to calculate the volume of half a cylinder - ${ }^{2}$ Strategy: substitute into formula - ${ }^{3}$ Process: calculate the volume and state units	- ${ }^{1}$ evidence - $2 \frac{1}{2} \times \pi \times 7^{2} \times 30$ ${ }^{-3}$ 2309.07...cm ${ }^{3}$	3
		Alternative Strategy: - ${ }^{1}$ Strategy: know to calculate the area of the semi-circle and multiply it by 30 - ${ }^{2}$ Strategy: substitute into semicircle formula - ${ }^{3}$ Process: calculate the volume and state units	- ${ }^{1}$ evidence - $\frac{1}{2} \times \pi \times 7^{2}$ $\bullet{ }^{3} 76 \cdot 96 \ldots \times 30=2309 \cdot 07 \ldots \mathrm{~cm}^{3}$	

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. \bullet^{2} only available when 7 is used as radius.
2. Accept legitimate variations of π.
3. For the final answer accept any legitimate rounding or truncation to at least 2 significant figures.
4. Correct answer with no working
5. $V=A h$ on its own is not sufficient evidence for \bullet^{1}.
6. \bullet^{3} is only available for calculations involving π, a power and at least one other number to find a volume.
7. If formula does not involve π then
8. If $V=\frac{1}{3} \pi r^{2} h \div 2$ is used, approximations of $\frac{1}{3}$ must be expressed to at least 2 decimal places. \bullet^{2} and \bullet^{3} are available.
9. If $V=\frac{4}{3} \pi r^{3} \div 2$ is used, approximations of $\frac{4}{3}$ must be expressed to at least 2 decimal places. \bullet^{2} and \bullet^{3} are available.

Question	Generic scheme	Illustrative scheme	Max mark

Commonly Observed Responses:

Working must be shown

1. For $\frac{1}{2} \times 3.14 \times 7^{2} \times 30=2307.9 \mathrm{~cm}^{3}$
2. For $\frac{1}{2} \times \pi \times 7^{2} \times 14=1077 \cdot 56 \ldots \mathrm{~cm}^{3}$
award $3 / 3 \checkmark \checkmark \checkmark$
3. For $\frac{1}{2} \times \pi \times 7^{2} \times 30 \times 14=32326.99 \ldots \mathrm{~cm}^{3}$
4. For $\pi \times 7^{2} \times 30=4618 \cdot 14 \ldots \mathrm{~cm}^{3}$
5. For $3.14 \times 7^{2} \times 30=4615.8 \mathrm{~cm}^{3}$
6. For $\frac{1}{2} \times \pi \times 14^{2} \times 30=9236 \cdot 28 \ldots \mathrm{~cm}^{3}$
7. For $\frac{1}{2} \times 3.14 \times 14^{2} \times 30=9231.6 \mathrm{~cm}^{3}$
8. For $\pi \times 7^{2}=153 \cdot 9 . . . \mathrm{cm}^{3}$
9. For $\pi \times 14^{2} \times 30=18472 \cdot 56 \ldots \mathrm{~cm}^{3}$
10. For $3.14 \times 14^{2} \times 30=18463.2 \mathrm{~cm}^{3}$
11. For $14 \times 7 \times 30=2940 \mathrm{~cm}^{3}$
award $2 / 3 \checkmark \times \checkmark$
award $2 / 3 \checkmark \times \checkmark$
award $2 / 3 \times \checkmark \checkmark$
award $2 / 3 \times \checkmark \checkmark$
award $2 / 3 \times \checkmark \checkmark$
award $1 / 3 \times \checkmark \times$
award $1 / 3 \times \times \checkmark$
award 1/3 $\times \times \checkmark$
award $0 / 3 \times x x$

Question		Generic scheme	Illustrative scheme	Max mark
2.	(a)	Ans: (£)6150•64 - ${ }^{1}$ Process: work out the cost of 8000 shares -2 Strategy: know how to calculate percentage decrease - ${ }^{3}$ Strategy: know how to calculate percentage increase - ${ }^{4}$ Strategy: identify power - ${ }^{5}$ Process: calculate the value of the shares	- ${ }^{1} 8000 \times 0.73=5840$ - ${ }^{2}$ Evidence of 0.97 - ${ }^{3}$ Evidence of $1 \cdot 042$ - ${ }^{4} . .{ }^{2}$ - ${ }^{5} 6150 \cdot 64$	5
		Alternative Strategy 1: - ${ }^{1}$ Strategy: know how to calculate percentage decrease -2 Strategy: know how to calculate percentage increase - ${ }^{3}$ Strategy: identify power - ${ }^{4}$ Process: calculate value of 1 share - ${ }^{5}$ Process: calculate the value of 8000 shares	- ${ }^{1}$ Evidence of 0.97 - ${ }^{2}$ Evidence of 1.042 - ${ }^{3} . . .{ }^{2}$ - ${ }^{4} 0.768$... - ${ }^{5} 6150 \cdot 64$	

Notes:

1. When working in pounds, where rounding or truncation has taken place, working must be given to at least 2 decimal places.
2. Final answer must be given to 2 decimal places where necessary.

Commonly Observed Responses:

1. For $6150 \cdot 63$ supported by working.
award $5 / 5 \checkmark \checkmark \checkmark \checkmark \checkmark$
2. For 6160 (percentage calculations on individual share price, rounded to nearest penny at each step) supported by working. award $5 / 5 \checkmark \checkmark \checkmark \checkmark \checkmark$
3. For $1.054 \times 5840=6155.36$
award $2 / 5 \checkmark \times x \times \checkmark$
4. For $5840 \times 0.97 \times 1.042=5902.72$
award $4 / 5 \checkmark \checkmark \checkmark \times \checkmark$
5. For $5664 \cdot 80+5664 \cdot 80 \times(0.042 \times 2)=6140 \cdot 64$
award $3 / 5 \checkmark \checkmark \checkmark x x$

Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)	Ans: (£)4087•05 -1 Strategy: know to calculate $\frac{5}{8}$ of 6560 and subtract commission -2 Process: calculate amount received	- ${ }^{1}$ evidence $\bullet^{2} 4087 \cdot 05$	2

Notes:

1. Where \bullet^{1} is not awarded \bullet^{2} can be awarded for a calculation of the form $\frac{a}{b} \times \ldots \pm 12 \cdot 95$, where $\frac{a}{b}$ is equivalent to either $\frac{5}{8}$ or $\frac{8}{5}$.

Commonly Observed Responses:

1. $\frac{5}{8}$ of $6560+12 \cdot 95=4112 \cdot 95$ award 1/2×

Question		Generic scheme	Illustrative scheme	Max mark
3.		Ans: (£)92•60 -1 Process: calculate new price - 2 Process: calculate the deposit - Process: calculate amount still payable - ${ }^{4}$ Communication: state how much each monthly payment is	$\begin{aligned} & \bullet \cdot 1260+151 \cdot 20=1411 \cdot 20 \\ & \cdot{ }^{2} \frac{1}{3} \text { of } 1411 \cdot 20=470 \cdot 40 \\ & \bullet^{3} 470 \cdot 40+200=670 \cdot 40 \\ & 1411 \cdot 20-670 \cdot 40=740 \cdot 80 \\ & \bullet{ }^{4} 740 \cdot 80 \div 8=92 \cdot 60 \end{aligned}$	4

Notes:

1. Must have 0 at the end of $92 \cdot 60$ to gain final mark.
2. \bullet^{4} is not available where candidate has divided their deposit by 8 - see COR 9 and 10

Commonly Observed Responses:

1. For $\frac{1}{3}$ of 1260 leading to $98 \cdot 90$
award $3 / 4 \checkmark \times \checkmark \checkmark$
2. Not subtracting 200 leading to $117 \cdot 60$
3. Not subtracting deposit leading to 151.40
award $3 / 4 \checkmark \checkmark \times \checkmark$
award $3 / 4 \checkmark \checkmark \times \checkmark$
4. $1411 \cdot 20$ leading to $1211 \cdot 20$ leading to $\frac{1}{3}$ of $1211 \cdot 20$ leading to $807 \cdot 46$ $807 \cdot 46 \div 8=100 \cdot 93$
5. For $\frac{1}{3}$ of 1260 leading to $(1260-420-200) \div 8=80$
6. 12% of 1260 leading to $1411 \cdot 20$
$\frac{1}{3}$ of $1260=420$
$1260-620=640$
$640 \div 8=80$
7. $1411 \cdot 20 \div 8=176 \cdot 40$
8. $1260 \div 8=157 \cdot 50$
9. $470 \cdot 40 \div 8=58 \cdot 80$
10. $420 \div 8=52.50$
award $3 / 4 \checkmark \times \checkmark \checkmark$
award $2 / 4 \times \times \checkmark \checkmark$
award $2 / 4 \checkmark \times \times \checkmark$
award2/4 $\times \times \times \checkmark$
award $1 / 4 \times x \times \checkmark$
award $2 / 4 \checkmark \checkmark x x$
award 0/4xxxx

Quest	Generic scheme	Illustrative scheme	Max mark
(c)	Ans: correct boxplot -1 Process: calculate lower quartile -2 Process: calculate upper quartile - Communication: correct end points drawn -4 Communication: consistent box drawn	- ${ }^{1} Q_{1}=67$ - ${ }^{2} \mathrm{Q}_{3}=84$ -3 59 and 95 - Box showing Q_{1}, Q_{2} and Q_{3}	4

Notes:

1. The boxplot must be drawn to a reasonable scale.
2. If an unsuitable scale is used a maximum of $3 / 4$ is available.
3. If the boxplot is drawn for "before exercise" a maximum of $3 / 4$ is available.
4. If no working is shown and the boxplot is correct award 4/4.
5. If no working is shown and Q_{1} and Q_{3} are both incorrect, $\bullet{ }^{4}$ is still available if consistent median is shown on boxplot.
6. If no working is shown and only one of Q_{1} or Q_{3} is correct, award \bullet^{1}.
${ }^{4}$ is still available if consistent median is shown on boxplot.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
5. (a)	Ans: 240(km) \bullet 1 Process: calculate the distance from a scale drawing $\bullet 2$ Process/communication: give answer in kilometres	$\bullet \bullet^{2} 8 \times 3000000=24000000$	$\mathbf{2}$	

Notes:

1. Tolerance $\pm 1 \mathrm{~mm}$ on candidate measurement

Commonly Observed Responses:

1. For $2 \cdot 4,24,2400,24000$ etc..., with or without working award $1 / 2 \checkmark x$

(b)	Ans: 17 (knots) - ${ }^{1}$ Strategy: know how to calculate average speed and to change hours and minutes to hours -2 Strategy: know how to convert average speed into knots -3 Process/communication: calculate average speed to 2 significant figures	- $\frac{240}{7 \cdot 5}=\ldots$ ${ }^{-2} \ldots \times 0 \cdot 54=\ldots$ - ${ }^{3} 17 \cdot 28=17$ (2 sig fig)	3

Notes:

1. Candidates must work to at least 3 significant figures throughout where appropriate.
2. \bullet^{2} can only be awarded for multiplying an average speed by 0.54 or equivalent.
3. \bullet^{3} can only be awarded for a two-step calculation and rounding.

Commonly Observed Responses:

1. For $\frac{240}{450} \times 0.54=0.288=0.29$
award $2 / 3 \times \checkmark \checkmark$
2. For $\frac{240}{7 \cdot 3} \times 0 \cdot 54=17 \cdot 75 \ldots=18$ award $2 / 3 \times \checkmark \checkmark$

	uest	Generic scheme	Illustrative scheme	Max mark
5.	(c)	Ans: 139 (euro) - ${ }^{1}$ Strategy: know how to calculate amount of euro -2 Process: calculate remaining euro	- ${ }^{1} 55 \%$ of $2400 \times 1 \cdot 15$... - $^{2} 1518-1379=139$	2

Notes:

1. Where \bullet^{1} is lost \bullet^{2} is still available for a 3 step process.

Commonly Observed Responses:

	(d)	(i)	Ans: $7 / 32$ $\bullet{ }^{1}$ Communication: state probability	$\bullet{ }^{1} 7 / 32$	1

Notes:

1. $7: 32$ is not acceptable for \bullet^{1}

Commonly Observed Responses:

| | (ii) | Ans: 1/28
 $\bullet 2$ Strategy/process: calculate
 denominator | \bullet^{2} denominator of 28 |
| :--- | :--- | :--- | :--- | :---: |
| \bulletCommunication: state
 probability | $\bullet^{3} 1 / 28$ | $\mathbf{2}$ | |

Notes:

1. If the answer to part (d)(i) is written as a ratio then $1: 28$ is acceptable for \bullet^{3}.

Commonly Observed Responses:

1. For $\frac{1}{27}$ award $1 / 2 \times \checkmark$
2. For $\frac{28}{1}$ award $0 / 2 x x$

Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)	Ans: 102 (cages) - 1 Strategy: know to calculate two arrangements - 2 Process: calculate one arrangement. - Process/communication: calculate second arrangement and make consistent conclusion	- ${ }^{1}$ Evidence $\begin{aligned} & \bullet^{2} 2 \cdot 25 \mathrm{~m} \div 0 \cdot 75=3 \text { cages } \\ & 15 \mathrm{~m} \div 0 \cdot 85=17 \text { cages } \\ & \text { Total }=3 \times 17 \times 2=102 \text { cages } \\ & \bullet^{3} 2 \cdot 25 \mathrm{~m} \div 0 \cdot 85=2 \text { cages } \\ & 15 \mathrm{~m} \div 0 \cdot 75=20 \text { cages exactly } \\ & \text { Total }=20 \times 2 \times 2=80 \end{aligned}$	3

Notes:

1. When a candidate calculates two versions for one level and only doubles the larger, all three marks are still available.
2. Where a candidate considers more than two arrangements do not award \bullet^{1}.

Commonly Observed Responses:

1. For volume of truck \div volume of cage $=109$

Question		Generic scheme	Illustrative scheme	Max mark
6.	(b)	Ans: (£) 1026 - ${ }^{1}$ Process: calculate basic pay -2 Process: calculate overtime Pay -3 Process: calculate weekly gross pay	$\begin{aligned} & \cdot 1 \frac{1}{2} \times 14 \cdot 40=21 \cdot 60 \\ & \cdot 28 \frac{1}{2} \times 14 \cdot 40 \times 1 \cdot 5=183 \cdot 60 \\ & \bullet 3(183 \cdot 60+21 \cdot 60) \times 5 \\ & \quad=205 \cdot 20 \times 5 \\ & =1026 \end{aligned}$	3
		Alternative Strategy 1: - ${ }^{1}$ Process: calculate 10 hours basic pay - 2 Process :calculate $8 \frac{1}{2}$ hours at $\frac{1}{2}$ time - 3 Process: calculate weekly gross pay	$\text { -1 } 10 \times 14 \cdot 40=144$ $\cdot 28 \frac{1}{2} \times 7 \cdot 20=61 \cdot 20$ - $3 \quad(144+61 \cdot 20) \times 5=1026$	

Notes:

1. \bullet^{3} is available for adding basic pay, overtime pay and multiplying them by 5

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark	
7.	(a)	(i)	Ans: $19 \cdot 5\left({ }^{\circ}\right)$ \bullet^{1} Process: calculate mean	$\bullet 1$ $\bullet^{1}(24+22+19+18+17+17) \div 6=19 \cdot 5$	

Notes:

1. Correct answer with no working.
award 1/1

Commonly Observed Responses:

1. $24+22+19+18+17+17=19 \cdot 5$
award 0/1

| (ii) | Ans: $2 \cdot 88$
 \bullet^{2} Process: calculate $(x-\bar{x})^{2}$ | $\bullet^{2} 20 \cdot 25,6 \cdot 25,0 \cdot 25,2 \cdot 25,6 \cdot 25,6 \cdot 25$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :---: |
| \bullet^{3} Strategy: substitute into | | | |
| formula | | | |
| \bulletProcess: calculate standard
 deviation | $\bullet^{4} 2 \cdot 88$ | | |

Notes:

1. Alternative method

Mark 2 - $\sum x=117$ and $\sum x^{2}=2323$
2. Where rounding or truncation has taken place, working must be given to at least 2 decimal places.
3. Accept rounding or truncation to at least one decimal place for the final answer.
4. Mark 4 can only be awarded when a 2 step calculation has taken place.

Commonly Observed Responses:

(b)	Ans: two valid comments - ${ }^{1}$ Communication: comment regarding mean - ${ }^{2}$ Communication: comment regarding standard deviation	- ${ }^{1}$ eg on average Durban's temperatures are higher -2 eg Durban's temperatures are less consistent	2

Notes:

1. Examples of unacceptable comments:

The weather is warmer in Durban compared to Cape Town (no mention of average)
The weather varies more in Durban compared to Cape Town (no mention of temperature)

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
7.	(c)	Ans: New York and London - ${ }^{1}$ Strategy/process : calculate one local time - ${ }^{2}$ Strategy/process: calculate the other two local times - ${ }^{3}$ Communication: state offices which can take part	- ${ }^{1}$ Mumbai 9:00pm London 1:30pm New York 8:30am -2 calculate remaining two local times - ${ }^{3}$ New York and London	3
		Alternative Strategy 1: - ${ }^{1}$ Strategy/process: calculate one time difference - 2 Strategy/process :calculate remaining two time differences - ${ }^{3}$ Communication: state offices which can take part	- ${ }^{1}$ Mumbai +5 hrs 30 mins London -2 hrs New York -7 hrs -2 calculate remaining two differences -3 New York and London	
		Alternative Strategy 2: - ${ }^{1}$ Strategy/process: calculate how long until 3:30pm -2 Strategy/process :calculate all three of the local times - ${ }^{3}$ Communication: state offices which can take part	-1 22 hours 5 minutes -2 Mumbai 9:00pm London 1:30pm New York 8:30am -3 New York and London	

Notes:

1. Correct answer with no working award $0 / 3$.
2. Converting between 12 and 24 hour time with no other working and the correct conclusion award 0/3.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	Ans: 707 (mm) - ${ }^{1}$ Strategy: calculate short sides of triangle - ${ }^{2}$ Strategy: evidence of the correct form of Pythagoras' theorem -3 Process: calculate length of hypotenuse of triangle	- ${ }^{1} 500$ - $^{2} 500^{2}+500^{2}$ - ${ }^{3}$ 707•1068...	3

Notes:

Commonly Observed Responses:

(b)	Ans: $685000\left(\mathrm{~mm}^{2}\right)$ $\bullet 1$ Strategy: evidence of calculating the area of the square encasing pentagonal shower base and subtract area of missing triangle $\bullet 2$ Process: calculate area of pentagonal base	$\bullet \bullet^{2} 810000-125000=685000$	$\mathbf{2}$	

Notes:

1. If the candidate converts units incorrectly do no award \bullet^{2}.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.	(c)	Ans: Zuzanna should pick the offset quadrant (since $732743 \mathrm{~mm}^{2}>$ $685000 \mathrm{~mm}^{2}$) -1 Strategy: evidence of quarter circle added to rectangles -2 Process: calculate the area of the quarter circle - 3 Process: calculate area of shower tray - ${ }^{4}$ Communication: conclusion consistent with working	- ${ }^{1}$ Evidence - $2 \frac{1}{4} \times \pi \times 600 \times 600=282743$ $\bullet^{3} 282743+450000=732743$ -4 Zuzanna should pick the offset quadrant (since $732743 \mathrm{~mm}^{2}$ > $685000 \mathrm{~mm}^{2}$)	4
		Alternative Strategy 1: - 1 Strategy: evidence of whole square minus area that is not part of the base. -2 Process: calculate the area of the quarter circle - 3 Process: calculate area of shower tray -4 Communication: conclusion consistent with working	- ${ }^{1}$ Evidence - $\frac{1}{4} \times \pi \times 600 \times 600=282743$ - ${ }^{3}$ 810000-(360000-282743) $\text { = } 732743$ -4 Zuzanna should pick the offset quadrant (since $732743 \mathrm{~mm}^{2}$ > $685000 \mathrm{~mm}^{2}$)	

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. \bullet^{2} is available for finding area of a whole circle or any fraction of a circle with radius 600 .
2. If the candidate uses the same incorrect unit conversion in part (c) as in part (b) do not penalise again.
3. \bullet is only available for adding to 450000 (does not apply to the alternative strategy).
4. In alternative strategy, \bullet^{3} is only available for subtracting from 810000.
5. Disregard incorrect numerical comparison in conclusion.

Commonly Observed Responses:

In the following cases: \bullet^{4} is also available for consistent conclusion.

1. For $\frac{1}{4} \times 3 \cdot 14 \times 600 \times 600=282600$ leading to answer of 732600 award \bullet^{1}, \bullet^{2} and \bullet^{3}.
2. For $\frac{1}{4} \times 3.14 \times 300 \times 300=70650$ leading to answer of 520650 award \bullet^{1} and \bullet^{3}.
3. For $810000-282743=527257$ award \bullet^{2} and \bullet^{3}. (Whole square minus quarter circle).

[END OF MARKING INSTRUCTIONS]

