$13 / 12 / 17$
Unit 2 : Properties of Functions - Lesson 4

Modulus Graphs, Critical Points and Extrema

LI

- Sketch the graph of the Modulus of a function.
- Find Critical Points of a function.

SC

- Differentiation.
- Graph sketching.

Sketching Modulus Graphs

$$
\begin{gathered}
\text { The modulus (aka absolute value) of a number } p \text { is: } \\
\qquad|p|=\left\{\begin{array}{r}
p \text { (if } p \geq 0 \text {) } \\
-p \text { (if } p<0)
\end{array}\right.
\end{gathered}
$$

The modulus of a function f is the modulus of all y-values:

$$
|f|=\left\{\begin{array}{r}
f(\text { if } f \geq 0) \\
-f(\text { if } f<0)
\end{array}\right.
$$

To sketch the graph of the modulus of a function f, reflect in the x-axis any parts of the graph that are below the x-axis

Critical Points

A critical point of a function is a point where either :

- $f^{\prime}(x)=0$ (stationary point).
- $f^{\prime}(x)$ does not exist.
$f^{\prime}(x)$ will not exist when the graph has a 'sharp corner' or at an endpoint

Extrema

Extrema for a function refer to maximum and minimum values (i.e. y - values)

3 Types of Extrema

- Local.
- Endpoint.
- Global.

A function has a local minimum (local maximum) at $x=a$ if there is an interval containing $x=a$ for which $f(a) \leq(\geq) f(x)$ for all x-values in that interval

Local Minimum

If $x=a$ is an endpoint in dom f, f has an endpoint minimum (endpoint maximum) at $x=a$ if there is a point $x=p$ in dom f such that $f(a) \leq(\geq) f(x)$ for all x-values in the interval $[a, p$) or (p, a]

Endpoint Minimum

Endpoint Maximum

A function has a global minimum (global maximum) at $x=a$ if $f(a) \leq(\geq) f(x)$ for all x - values in the domain of f

All local extrema occur at critical points;
but not all critical points are local extrema

Every global extremum is either a local extremum or endpoint extremum

Example 1

Sketch the graphs of :
(a) $f(x)=|x+2|$.
(b) $g(x)=|\sin x|(0 \leq x \leq 2 \pi)$.
(a) The graph of f is the graph of $y=|x|$ shifted 2 units to the left.

(b)

Example 2

Sketch the graph of $f(x)=\left|3+2 x-x^{2}\right|$ for $x \in[0,4)$ and identify its extrema.

Consider $Q(x)=3+2 x-x^{2}=(3-x)(1+x)$. This allows us to sketch the graph of Q and hence $f(=|Q|) . Q$ has a stationary point at $(1,4)$. The graph of f is:

Critical points occur at (1,4) (it's a stationary point), (0,3) and $(3,0)$ ($f^{\prime}(0)$ and $f^{\prime}(3)$ don't exist). $(4,5)$ is not a critical point of f as 4 is not in the domain of f.
$(1,4)$: local maximum
$(0,3)$: (local) endpoint minimum
$(3,0)$: global minimum

Example 3

Classify the extrema of $f(x)=|3 \sin x|$ for $x \in[0,2 \pi]$.

$(0,0),(\pi, 0),(2 \pi, 0)$: global minima
$(\pi / 2,3),(3 \pi / 2,3)$: global maxima

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 66 Ex. 5.2 All Q.
- pg. 71 Ex. 5.6 Q 1 a, b, e, 2 a, $3 a, b, c$.

Ex. 5.2

For each of these functions sketch the graphs of $f(x)$ and $|f(x)|$.
1 f $f(x)=x-1$
$2 f(x)=2 x-1$
$3 f(x)=\cos x^{\circ}, 0 \leq x \leq 360$
$4 f(x)=x^{2}-1$
$5 f(x)=1-x^{2}$
$6 f(x)=x^{2}$
$7 f(x)=x^{3}$
$8 f(x)=\ln x, x>0$
$9 f(x)=\tan x^{\circ}, 0 \leq x \leq 360$

Ex. 5.6

1 Consider the nature of the end-points in these functions.
a $f(x)=x^{2} \quad$ domain $[-1,2] \quad$ that is $-1 \leqslant x \leqslant 2$
b $f(x)=4-x^{2} \quad$ domain $[-1,1]$
e $f(x)=|2 x| \quad$ domain $[-2,3) \quad$ that is $-2 \leqslant x<3$
2 Identify the critical points in these functions.
a $f(x)=x^{2}+2 x+1 \quad$ domain $[-2,3]$
3 i Find the critical points.
ii Identify end-points and local extrema.
iii Hence identify the global maxima and minima where they exist.
a $f(x)=x^{2}-4 x-5 \quad$ domain $[-2,4]$
b $f(x)=|\cos x| \quad$ domain $\left[\frac{\pi}{4}, \frac{2 \pi}{3}\right]$
c $f(x)=|\ln x| \quad$ domain $(0, e]$

Answers to AH Maths (MiA), pg. 71, Ex. 5.6

1 a $(-1,1)$ end point max; $(2,4)$ end point max.
b $(-1,3)$ end point min; $(1,3)$ end point min.
e $(-2,4)$ end point max; $(3,6) 3$ not in domain.
2 a $(-1,0)$ local min; $(3,16)$ end point max; $(-2,1)$ end point max.

3 a i ii $(-2,7)$ end pt max; $(2,-9)$ local min; $(4,-5)$ end pt max.
iii $(2,-9)$ global min; $(-2,7)$ global max.
b i ii $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ end pt max; $\left(\frac{\pi}{2}, 0\right)$ local min; $\left(\frac{2 \pi}{3}, \frac{1}{2}\right)$ end pt max.
i ii $\left(\frac{\pi}{2}, 0\right)$ global min; $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ global max.
c i ii $(1,0)$ local min; $(e, 1)$ local max
iii $(1,0)$ global min; no global max.

