

www.a-levelmathstutor.com

This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit.

Contents

uniform acceleration 3
non-uniform acceleration 11
simple harmonic motion 15

Uniform Acceleration

Introduction

To understand this section you must remember the letters representing the variables:

```
u - initial speed
v - final speed
a - acceleration(+) or deceleration(-)
t - time taken for the change
s - displacement(distance moved)
```

It is also important to know the S.I. units (Le Système International d'Unités) for these quantities:

```
u - metres per second (ms }\mp@subsup{}{}{-1}
v - metres per second (ms-1)
a - metres per second per second (ms-2)
t - seconds (s)
s - metres (m)
```

in some text books 'speed' is replaced with 'velocity'. Velocity is more appropriate when direction is important.

Displacement-time graphs

For a displacement-time graph, the gradient at a point is equal to the speed.

Speed-time graphs

For a speed-time graph, the area under the curve is the distance travelled.

The gradient at any point on the curve equals the acceleration.

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Note, the acceleration is also the second derivative of a speed-time function.

Equations of Motion

One of the equations of motion stems from the definition of acceleration:

$$
\text { acceleration }=\text { the rate of change of speed }
$$

$$
a=\frac{v-u}{t}
$$

rearranging

$$
v=u+a t
$$

if we define the distance ' s ' as the average speed times the time(t), then:

$$
s=\left(\frac{u+v}{2}\right) t
$$

rearranging

$$
u+v=\frac{2 s}{t}
$$

rearranging (i

$$
v-u=a t
$$

subtracting these two equations to eliminate v

$$
\begin{aligned}
& 2 u=\frac{2 s}{t}-a t \\
& 2 u t=2 s-a t^{2} \\
& 2 u t+a t^{2}=2 s \\
& u t+\frac{a t^{2}}{2}=s, \quad s=u t+\frac{a t^{2}}{2}
\end{aligned}
$$

it is left to the reader to show that :

$$
v^{2}-u^{2}=2 a s
$$

hint: try multiplying the two equations instead of subtracting
summary:

$$
\begin{aligned}
& s=\left(\frac{u+v}{2}\right) t \\
& v-u=a t \\
& s=u t+\frac{a t^{2}}{2} \\
& v^{2}-u^{2}=2 a s
\end{aligned}
$$

Example \#1

A car starts from rest and accelerates at $10 \mathrm{~ms}^{-1}$ for 3 secs. What is the maximum speed it attains?

$$
\begin{aligned}
u & =0 \mathrm{~ms}^{-1} \quad a=10 \mathrm{~ms}^{-2} \quad t=3 \mathrm{~s} \\
\nu & =u+a t \\
& =0+(10 \times 3) \\
& =30
\end{aligned}
$$

Ans. maximum speed is $30 \mathrm{~ms}^{-1}$

Example \#2

A car travelling at $25 \mathrm{~ms}^{-1}$ starts to decelerate at $5 \mathrm{~ms}^{-2}$. How long will it take for the car to come to rest?

$$
\begin{aligned}
u & =25 \mathrm{~ms}^{-1} \quad v=0 \quad a=-5 \mathrm{~ms}^{-2} \\
v & =u+a t \\
0 & =25+(-5) t \\
5 t & =25 \\
t & =5
\end{aligned}
$$

Ans. it takes 5 secs. for the car to stop

Example \#3

A car travelling at $20 \mathrm{~ms}^{-1}$ decelerates at $5 \mathrm{~ms}^{-2}$.
How far will the car travel before stopping?

$$
\begin{gathered}
u=20 \mathrm{~ms}^{-1} \quad v=0 \quad a=-5 \mathrm{~ms}^{-2} \\
v^{2}-u^{2}=2 a s \\
0-(20 \times 20)=2(-5) \mathrm{s} \\
-400=-10 s \\
s=\frac{400}{10}=40
\end{gathered}
$$

Ans. distance travelled is 40 m

Example \#4

A car travelling at $30 \mathrm{~ms}^{-1}$ accelerates at $5 \mathrm{~ms}^{-2}$ for 8 secs. How far did the car travel during the period of acceleration?

$$
\begin{aligned}
& u=30 \mathrm{~ms}^{-1} \quad a=5 \mathrm{~ms}^{-2} \quad t=8 \mathrm{~s} \\
& s=u t+\frac{1}{2} a t^{2} \\
& s=(30 \times 8)+\frac{1}{2}(5 \times 8 \times 8) \\
& =240+160 \\
& =400
\end{aligned}
$$

Ans. car travelled 400 m during acceleration

Vertical motion under gravity

These problems concern a particle projected vertically upwards and falling 'under gravity'.

In these types of problem it is assumed that:
air resistance is minimal
displacement \& velocity are positive(+) upwards \& negative(-)downwards
acceleration(g) always acts downwards and is therefore negative(-)
acceleration due to gravity (g) is a constant

Example \#1

A stone is thrown vertically upwards at $15 \mathrm{~ms}^{-1}$.
(i) what is the maximum height attained?
(ii) how long is the stone in the air before hitting the ground?
i)

$$
\begin{aligned}
& \text { (Assume } \mathrm{g}=9.8 \mathrm{~ms}^{-2} \text {. Both answers to } 2 \mathrm{~d} . \mathrm{p} . \text {) } \\
& \begin{aligned}
& u=15 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \\
& \text { max. height is when final velocity } \quad v=0 \\
& v^{2}-u^{2}=2 a s \\
& 0-(15)^{2}=2(-9.8) \mathrm{s} \\
&-225=-19.6 s \\
& s=\frac{225}{19.6}=11.4796
\end{aligned}
\end{aligned}
$$

Ans. max. height is 11.48 m (2 d.p.)
ii)

$$
\begin{aligned}
& u=15 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \\
& \text { time of flight is } 2 t \text {, twice time to max. height } t \\
& \text { max. height is when final velocity } \quad v=0 \\
& \qquad \begin{aligned}
v & =u+a t \\
& =15+(-9.8) t \\
15 & =9.8 t \\
t & =\frac{15}{9.8}=1.5306
\end{aligned} \\
& \begin{aligned}
\therefore \quad 2 t & =3.0612
\end{aligned}
\end{aligned}
$$

Ans. max. time in air is 3.06 secs. ($2 \mathrm{~d} . \mathrm{p}$.)

Example \#2

A boy throws a stone vertically down a well at $12 \mathrm{~ms}^{-1}$. If he hears the stone hit the water 3 secs. later,
(i) how deep is the well?
(ii)what is the speed of the stone when it hits the water?
i)
(Assume $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$. Both answers to $1 \mathrm{~d} . \mathrm{p}$.)

$$
\begin{aligned}
u=-12 & \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=3 \mathrm{~s} \\
s & =u t+\frac{1}{2} a t^{2} \\
& =(-12)(3)+\frac{1}{2}(-9.8)(3 \times 3) \\
& =-36-44.1 \\
& =-80.1
\end{aligned}
$$

Ans. depth of well is 80.1 m (1 d.p.)
ii)

$$
\begin{aligned}
v & =u+a t \\
& =(-12)+(-9.8)(3) \\
& =-121-29.4 \\
& =-41.4
\end{aligned}
$$

Ans. stone strikes water at $41.4 \mathrm{~ms}^{-1}(1 \mathrm{~d} . \mathrm{p}$.

Non-uniform Acceleration

Theory

Consider a particle P moving in a straight line from a starting point O .

The displacement from O is x at time t.
The initial conditions are: $t \geq 0$ when $x=0$.
if v is the velocity of P at time t, then

$$
v=\frac{d x}{d t}
$$

The acceleration ' a ' of particle P is defined as:

$$
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

or alternately,

$$
\begin{aligned}
& \qquad \begin{aligned}
a & =\frac{d v}{d t} \\
& =\frac{d v}{d x} \frac{d x}{d t} \\
\text { but } \frac{d x}{d t} & =v \\
\therefore \quad a & =v \frac{d v}{d x}
\end{aligned}
\end{aligned}
$$

Problems on this topic are solved by analysing the information given to form a differential equation. This is then integrated, usually between limits.

Example \#1

A particle moves in a straight line such that its acceleration ' a ' at time ' t ' is given by:

$$
a=4 t-7
$$

If the initial speed of the particle is $5 \mathrm{~ms}^{-1}$, at what values of ' t ' is the particle stationary?

$$
\begin{aligned}
& a=\frac{d v}{d t} \\
& \Rightarrow \quad \frac{d v}{d t}=4 t-7 \\
& \Rightarrow \quad d v=(4 t-7) d t \\
& \text { integrating both sides } \\
& \Rightarrow \quad v=2 t^{2}-7 t+C
\end{aligned}
$$

$$
\text { but } v=5 \mathrm{~ms}^{-1} \text { when } t=0
$$

$$
\Rightarrow \quad 5=0-0+C
$$

$$
\therefore \quad C=5
$$

$$
\Rightarrow \quad v=2 t^{2}-7 t+5
$$

$$
=(2 t-5)(t-1)
$$

the particle is at rest when $v=0$

$$
\begin{aligned}
& \therefore \quad(2 t-5)(t-1)=0 \\
& \Rightarrow t=5 / 2, \quad t=1
\end{aligned}
$$

particle is stationary at $t=1 \mathrm{sec} . t=2.5 \mathrm{sec}$.

Example \#2

A particle moves from a point O in a straight line with initial velocity $4 \mathrm{~ms}^{-1}$. if v is the velocity at any instant, the acceleration a of the particle is given by:

$$
a=\frac{3}{v}
$$

The particle passes through a point X with velocity $8 \mathrm{~ms}^{-1}$.
(i) how long does the particle take to reach point X ?
(ii) what is the distance OX?(1 d.p.)
i)

$$
\begin{array}{r}
a=\frac{d v}{d t} \\
\Rightarrow \quad \frac{d v}{d t}=\frac{3}{v} \\
\Rightarrow \quad d t=\frac{v}{3} d v \\
\text { integrating both sides }
\end{array}
$$

$$
\int d t=\int \frac{v}{3} d v
$$

the limits of v are $8 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
t & =\left[\frac{v^{2}}{6}\right]_{4}^{6} \\
& =\left[\frac{64}{6}\right]-\left[\frac{16}{6}\right] \\
& =\frac{48}{6}=8
\end{aligned}
$$

Ans. particle takes 8 secs. to reach X
ii)

$$
\begin{aligned}
& \quad v \frac{d v}{d x}=\frac{3}{v} \\
& \Rightarrow \quad d x=\frac{v^{2}}{3} d v
\end{aligned}
$$

integrating both sides

$$
\int d x=\int \frac{v^{2}}{3} d v
$$

the limits of v are $8 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
x & =\left[\frac{v^{3}}{9}\right]_{4}^{3} \\
& =\left[\frac{512}{9}\right]-\left[\frac{64}{9}\right] \\
& =\frac{448}{9}=49.7
\end{aligned}
$$

Ans. distance OX is 49.8 metres ($1 \mathrm{~d} . \mathrm{p}$.)

Simple Harmonic Motion

Theory

A particle is said to move with S.H.M when the acceleration of the particle about a fixed point is proportional to its displacement but opposite in direction.

Hence, when the displacement is positive the acceleration is negative(and vice versa).

This can be described by the equation:

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x
$$

where x is the displacement about a fixed point O (positive to the right, negative to the left), and W^{2} is a positive constant.

An equation for velocity is obtained using the expression for acceleration in terms of velocity and rate of change of velocity with respect to displacement(see 'non-uniform acceleration').

$$
v \frac{d v}{d x}=-\omega^{2} x
$$

separating the variable and integrating,

$$
\begin{aligned}
& \quad \int v a d v=\int-\omega^{2} d x \\
& \frac{1}{2} \nu^{2}=-\frac{1}{2} \omega^{2} x^{2}+C \\
& v=0 \quad \text { when } \quad x=a \\
& \Rightarrow \quad \frac{v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)}{} \\
& \Rightarrow \quad v= \pm \omega\left(a^{2}-x^{2}\right)^{t} \\
& \text { but } \quad v=\frac{d x}{d t} \\
& \Rightarrow \quad \frac{d x}{d t}= \pm \omega\left(a^{2}-x^{2}\right)^{t} \\
& \text { separating the variable and integrating again, } \\
& \quad \int \frac{d x}{\left(a^{2}-x^{2}\right)^{\ell}}=\int \pm \omega d t \\
& \quad-\cos s^{-1}\left(\frac{x}{a}\right)= \pm \omega t+C \\
& \text { when } t=0 \quad \text { when } x=a \\
& \Rightarrow \quad C=0 \\
& \therefore \quad \cos (\omega t)=\frac{x}{a} \quad \text { or } \quad x=a \cos (\omega t)
\end{aligned}
$$

NB $\cos ^{-1}()$ is the same as arc $\cos ()$

So the displacement against time is a cosine curve. This means that at the end of one completete cycle,

$$
\begin{array}{r}
a T=2 \pi \\
\therefore \quad T=\frac{2 \pi}{a} \\
\hline
\end{array}
$$

Example

A particle displaying SHM moves in a straight line between extreme positions A \& B and passes through a mid-position 0 .

If the distance $A B=10 \mathrm{~m}$ and the max. speed of the particle is $15 \mathrm{~m}^{-1}$ find the period of the motion to 1 decimal place.

$$
\begin{aligned}
& \mathrm{AB}=10 \mathrm{~m} \quad \therefore \quad \text { amplitude } a=5 \mathrm{~m} \\
& \text { max speed } \quad v_{\max }=15 \mathrm{~ms}^{-1} \\
& \quad v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \\
& \text { when } v \text { is max., displacement } x=0 \\
& \therefore \quad v^{2}=\omega^{2} a^{2} \\
& \Rightarrow \quad v=\omega a \\
& \Rightarrow \quad \omega=\frac{v}{a}=\frac{15}{5}=3 \\
& \text { period } \quad T \text { is given by: } \\
& \qquad T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}=2.094
\end{aligned}
$$

Ans. period of motion is 2.1 secs.

The SHM-circle connection is used to solve problems concerning the time interval between particle positions.

To prove how SHM is derived from circular motion we must first draw a circle of radius 'a'(max. displacement).

Then, the projection(x-coord.) of a particle A is made on the diameter along the x-axis. This projection, as the particle moves around the circle, is the SHM displacement about 0 .

from triangle OAP

$$
\begin{aligned}
\qquad x & =a \cos \omega t \\
\frac{d x}{d t} & =-a \omega \sin \omega t \\
\frac{d^{2} x}{d t^{2}} & =-a \omega^{2} \cos \omega t \\
\text { but } a \cos \omega t & =x \text { from (i) } \\
\Rightarrow \frac{d^{2} x}{\frac{d t^{2}}{2}} & =-\omega^{2} x
\end{aligned}
$$

Q.E.D. the motion of particle P
along the x-axis is S.H.M.

Example

A particle P moving with SHM about a centre O , has period T and amplitude a.

Q is a point $3 a / 4$ from $\mathrm{O} . \mathrm{R}$ is a point $2 a / 3$ from O . What is the time interval(in terms of T) for P to move directly from Q to R ? Answer to 2 d.p.

let the time interval between P_{1} and P_{2} be t secs.
let angle $\mathrm{P}_{1} \mathrm{OP}_{2}$ be θ rads.
period T is given by: $T=\frac{2 \pi}{\omega}, \quad a=\frac{2 \pi}{T}$
$\Rightarrow \quad t=\frac{\theta}{\omega}$
the angles in a straight line $=180 \mathrm{deg}$.
\therefore from the diagram, $\pi=\theta+\alpha+\beta$
$\Rightarrow \theta=\pi-\alpha-\beta$
from (ii substituting for θ

$$
t=\frac{\pi-\alpha-\beta}{\omega}
$$

from (i substituting for α

$$
t=\frac{T(\pi-\alpha-\beta)}{2 \pi}
$$

from the diagram $\quad \cos \alpha=\frac{\frac{2 a}{3}}{a}=\frac{2}{3}$

$$
\begin{array}{lr}
\alpha=\cos ^{-1}\left(\frac{2}{3}\right), & \alpha=0.8412 \\
\cos \beta=\frac{\frac{3 a}{4}}{a}=\frac{3}{4} \\
\beta=\cos ^{-1}\left(\frac{3}{4}\right), & \beta=0.7227
\end{array}
$$

substituting for α and β in (iii

$$
\begin{aligned}
t & =\frac{T(\pi-0.8412-0.7227)}{2 \pi} \\
& =\frac{T}{2 \pi}(1.5777)=0.2510 T
\end{aligned}
$$

Ans. time interval is $0.25 T$

Notes

This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit.

