$12 / 12 / 17$

Unit 2 : Properties of Functions - Lesson 3

Inverse Functions

LI

- Know the graphs of $y=\sin ^{-1} x, y=\cos ^{-1} x$ and $y=\tan ^{-1} x$.
- Find domains and ranges of functions and their inverses.
- Sketch the inverse graph of a function.

SC

- Sketch graphs.
- Find inverse functions.

Graphical Interpretation of the Inverse

To sketch the graph of the inverse of a function, reflect the graph in the line $y=x$

If $f(a)=b$, then $f^{-1}(b)=a$ and vice versa

Inverse Trig. Functions

Inverse Sine (aka arcsine)

$$
\begin{aligned}
& \operatorname{dom}\left(\sin ^{-1} x\right)=[-1,1] \\
& \operatorname{ran}\left(\sin ^{-1} x\right)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

Inverse Cosine (aka arccosine)

$$
\begin{gathered}
\operatorname{dom}\left(\cos ^{-1} x\right)=[-1,1] \\
\operatorname{ran}\left(\cos ^{-1} x\right)=[0, \pi]
\end{gathered}
$$

These 2 graphs do not repeat and do not extend

Inverse Tangent (aka arctangent)

$$
\operatorname{dom}\left(\tan ^{-1} x\right)=\mathbb{R}
$$

$$
\operatorname{ran}\left(\tan ^{-1} x\right)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

This graph does not repeat but does extend
infinitely far in both x - directions

Example 1

If $f(x)=9 x^{2}+1$, find the inverse function and state the largest suitable domain and range of f for f^{-1} to exist.

$$
\begin{array}{rlrl}
& & y & =9 x^{2}+1 \\
\therefore & x & =9 y^{2}+1 \\
\Rightarrow & & 9 y^{2} & =x-1 \\
\Rightarrow & & y^{2} & =\frac{x-1}{9} \\
\Rightarrow & & y & = \pm \frac{\sqrt{x-1}}{3}
\end{array}
$$

There are thus two options for a choice of inverse; either can be chosen. Traditionally, the positive root is chosen.

For $x \geq 0$, there is a 1-1 correspondence; for $x \leq 0$, there is a 1-1 correspondence

$$
\therefore \quad f^{-1}(x)=\frac{\sqrt{x-1}}{3}
$$

The domain of f^{-1} is $x \geq 1$ and the range is $y \geq 0$. Thus,

$$
\operatorname{dom} f: x \geq 0 ; \operatorname{ran} f: y \geq 1
$$

Example 2

Sketch the graph of the inverse of $f(x)=\sin 2 x$, stating a suitable domain and range for the original function for the inverse to exist.

A suitable inverse will thus exist for $-\pi / 4 \leq x \leq \pi / 4$ (with corresponding range $-1 \leq y \leq 1$).

$$
\begin{aligned}
& y & =\sin 2 x \\
\therefore & x & =\sin 2 y \\
\Rightarrow & 2 y & =\sin ^{-1} x \\
\Rightarrow & y & =(1 / 2) \sin ^{-1} x
\end{aligned}
$$

$$
\operatorname{dom} f:-\pi / 4 \leq x \leq \pi / 4 ; \text { ran } f:-1 \leq y \leq 1
$$

$$
\operatorname{dom} f^{-1}:-1 \leq x \leq 1 ; \operatorname{ran}^{-1}:-\pi / 4 \leq y \leq \pi / 4
$$

Example 3

Sketch the graph of the inverse of the function $y=f(x)$, part of whose graph is shown below :

The inverse graph is obtained by reflecting the above graph in the line $y=x$:

$$
\begin{aligned}
& \text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) } \\
& \text { - pg. } 67 \text { Ex. } 5.3 \text { Q } 2 \text { a-d, } 3 . \\
& \text { - pg. 68-9 Ex. } 5.4 \text { Q } 4 \text { (ii) a-c. }
\end{aligned}
$$

Ex. 5.3

2 With suitable restrictions on the domain and range, each of these functions has an inverse. Find the inverse and state the largest suitable domain and range for the function.
a $f(x)=x^{2}$
b $f(x)=x^{2}-4$
c $f(x)=(x+1)^{2}$
d $f(x)=(2 x-1)^{2}-1$

3 Each of these is the graph of a function.
Sketch the graph of its inverse.
a

b

c

d

e

f

Ex. 5.4

4 Each of these functions is defined so that an inverse exists.
ii Use it to help you sketch the inverse function
a $f(x)=\sin 3 x$
b $f(x)=3 \sin x$
c $f(x)=3+\sin x$

Answers to AH Maths (MiA), pg. 67, Ex. 5.3
2 a \sqrt{x};
Domain $x \geqslant 0 ; \quad$ Range $y \geqslant 0$
b $\sqrt{x+4}$;
Domain $x \geqslant 0 ; \quad$ Range $y \geqslant-4$
c $\sqrt{x}-1$;
Domain $x \geqslant-1$; Range $y \geqslant 0$
d $\quad \frac{1}{2}(\sqrt{x+1}+1)$; Domain $x \geqslant \frac{1}{2} ; \quad$ Range $y \geqslant-1$

3 a

b

c

d

e

f

Answers to AH Maths (MiA), pg. 68-9, Ex. 5.4

4 a

b

C

