Linwood High

intermediate 2 notes

INDEX

UNIT 1

page 1 Calculations Involving Percentages
page 3: Volumes of Solids
page 5 Linear Relationships
page 7 Algebraic Operations
page 12 Properties of the Circle

UNIT 2
page 16 Trigonometry
page 23 Simultaneous Linear Equations
page 27 Graphs, Charts and Tables
page 32 Use of Simple Statistics

UNIT 3
page 36 More Algebraic Operations
page 41 Quadratic Functions
page 45 Further Trigonometry

UNIT 1: CALCULATIONS INVOLVING PERCENTAGES

SIMPLE PERCENTAGES

Examples:
(1) simple interest

Invest $£ 12000$ for 8 months at 6% pa ($\mathrm{pa}=$ per annum, per year)
for 1 year $£ 12000 \div 100 \times 6=£ 720$
for 8 months $£ 720 \div 12 \times 8=£ 480$
(2) VAT

Radio costs $£ 60$ excluding VAT at 20%.
Find the cost inclusive of .
$V A T=£ 60 \div 100 \times 20=£ 12$
cost $=£ 60+£ 12=£ 72$

EXPRESSING AS A PERCENTAGE

$$
\% \text { change }=\frac{\text { change }}{\text { start }} \times 100 \%
$$

Examples:
(1) profit/loss

A $£ 15000$ car is resold for $£ 12000$ Find the percentage loss.

$$
\begin{aligned}
\text { loss } & =£ 15000-£ 12000=£ 3000 \\
\% \text { loss } & =\frac{3000}{15000} \times 100 \% \\
& =3000 \div 15000 \times 100 \% \\
& =20 \%
\end{aligned}
$$

(2) \% inflation

Shopping costs $£ 125$ in $2005, £ 128$ in 2006. Calculate the rate of inflation.

$$
\begin{aligned}
\text { increase } & =£ 128-£ 125=£ 3 \\
\% \text { inflation } & =\frac{3}{125} \times 100 \% \\
& =3 \div 125 \times 100 \% \\
& =2 \cdot 4 \%
\end{aligned}
$$

PERCENTAGE CHANGE

original

value | changed |
| :---: |
| value |

INCREASE: growth, appreciation, compound interest
DECREASE: decay, depreciation
$100 \% \xrightarrow{+a \%}(100+a) \%$
$100 \% \xrightarrow{-a \%}(100-a) \%$

For example,
8% increase: $100 \% \xrightarrow{+8 \%} 108 \%=1 \cdot 08$ multiply quantity by $1 \cdot 08$ for 8% increase 8% decrease: $100 \% \xrightarrow{-8 \%} 92 \%=0 \cdot 92$ multiply quantity by 0.92 for 8% decrease

Examples:

APPRECIATION AND DEPRECIATION

(1) A $£ 240000$ house appreciates in value by 5% in 2007, appreciates 10% in 2008 and depreciates by 15% in 2009. Calculate the value of the house at the end of 2009.
or evaluate year by year year 1
5% increase: $100 \%+5 \%=105 \%=1 \cdot 05$
10% increase: $100 \%+10 \%=110 \%=1 \cdot 10$
15% decrease: $100 \%-15 \%=085 \%=0 \cdot 85$

$$
\begin{aligned}
5 \% \times £ 240000 & =£ 12000 \\
£ 240000+£ 12000 & =£ 25200 \\
& \text { year } 2
\end{aligned}
$$

10% of $£ 252000=£ 25200$ $£ 252000+£ 25200=£ 277200$
year 3
£ $240000 \times 1 \cdot 05 \times 1 \cdot 10 \times 0 \cdot 85$
$=£ 235620$
15% of $£ 277200=£ 41580$
$£ 277200-£ 41580=£ 235620$

COMPOUND INTEREST

(2) Calculate the compound interest on $£ 12000$ invested at 5% pa for 3 years.

$$
\begin{aligned}
& £ 12000 \times(1 \cdot 05)^{3} \quad \text { ie. } \times 1 \cdot 05 \times 1 \cdot 05 \times 1 \cdot 05 \quad \text { or evaluate year by year } \\
& £ 12000 \times 1 \cdot 157625 \\
&= £ 13891 \cdot 50 \\
& \text { compound interest }=£ 13891 \cdot 50-£ 12000=£ 1891 \cdot 50
\end{aligned}
$$

UNIT 1: VOLUMES OF SOLIDS

SIGNIFICANT FIGURES

The number of significant figures indicates the accuracy of a measurement.
For example, $\quad 3400$ centimetres $=34$ metres $=0.034$ kilometres same measurement, same accuracy, each 2 significant figures.
significant figures: count the number of figures used, but
do not count zeros at the end of a number without a decimal point do not count zeros at the start of a number with a decimal point.
These zeros simply give the place-value ${ }^{1}$ of the figures and do not indicate accuracy.
rounding:

For example, 5713.4
5700
0.057134 has 5 significant figures
0.057 to 2 significant figures (this case, the nearest Thousandth) (note 0.057000 would be wrong)

FORMULAE:

PRISM: a solid with the same cross-section throughout its length. length 1 is at right-angles to the area A.

$$
V=A l
$$

cylinder $V=\pi r^{2} h$

CONE

$\overline{\text { 'place-value meaning Hundreds, Tens , Units, tenths, hundredths etc. }}$

Examples:
(1) Calculate the volume.

(2) Calculate the volume correct to $\mathbf{3}$ significant figures.

$$
\begin{aligned}
& \text { radius }=20 \mathrm{~cm} \div 2=10 \mathrm{~cm} \\
& \begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 10 \times 10 \times 25 \\
& =2617 \cdot 993 \ldots \mathrm{~cm}^{3} \\
V & =\pi r^{2} h \\
& =\pi \times 10 \times 10 \times 30 \\
& =9424 \cdot 777 \ldots \mathrm{~cm}^{3} \\
V & =\frac{4}{3} \pi r^{3} \div 2 \\
& =\frac{4}{3} \times \pi \times 10 \times 10 \times 10 \div 2 \\
& =2094 \cdot 395 \ldots \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { total area } & =2617 \cdot 993 \ldots+9424 \cdot 777 \ldots+2094 \cdot 395 \ldots \\
& =14137 \cdot 166 \ldots \\
& \approx 14100 \mathrm{~cm}^{3}
\end{aligned}
$$

UNIT 1: LINEAR RELATIONSHIPS

GRADIENT The slope of a line is given by the ratio: $m=\frac{\text { vertical change }}{\text { horizontal change }}$ For example,
\qquad

$$
\begin{array}{ll}
m_{A B}=0 & \text { horizontal } \\
m_{C D}=\frac{3}{5} & \text { positive } m \\
m_{E F}=\frac{6}{3}=2 &
\end{array}
$$

$$
m_{G H}=\frac{6}{-4}=-\frac{3}{2}
$$

$$
m_{I J} \text { is undefined }
$$ (or infinite)

negative m

vertical

Using coordinates, the gradient formula is

$$
m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}
$$

For example,

$$
\begin{gathered}
P(3,5), Q(6,7) \\
m_{P Q}=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}=\frac{7-5}{6-3}=\frac{2}{3}
\end{gathered}
$$

note: same result for

$$
\frac{5-7}{3-6}=\frac{-2}{-3}=\frac{2}{3}
$$

$$
R(-1,4), S(3,-2)
$$

$$
m_{R S}=\frac{y_{S}-y_{R}}{x_{S}-x_{R}}=\frac{-2-4}{3-(-1)}=\frac{-6}{4}=-\frac{3}{2}
$$

EQUATION OF A STRAIGHT LINE

gradient m

$$
y=m x+C
$$

y-intercept C units \quad ie. meets the y-axis at $(0, C)$

For example,

$\begin{array}{lll}(2,3) & m=\frac{3-6}{2-0}=-\frac{3}{2} & y=m x+C \\ (0,6) & C=6 & y=-\frac{3}{2} x+6\end{array}$
$(2,3)$
$m=\frac{0-(-2)}{5-0}=\frac{2}{5} \quad y=m x+C$
$(0,-2) \quad C=-2$
$y=\frac{2}{5} x-2$

Rearrange the equation to $y=m x+C$ for the gradient and y-intercept.
For example,

$$
\begin{array}{rlrl}
3 x+2 y-12 & =0 & \\
2 y & =-3 x+12 & & \text { isolate } y-\text { term } \\
y & =-\frac{3}{2} x+6 & & \text { obtain } 1 y= \\
y & =m x+C & & \text { compare to the general equation } \\
m & =-\frac{3}{2}, C=6, & \text { line meets the } y \text {-axis at }(0,6)
\end{array}
$$

UNIT 1: ALGEBRAIC OPERATIONS

REMOVING BRACKETS

Examples:
SINGLE BRACKETS
(1) $3 x(2 x-y+7)$
(2) $-2(3 t+5)$
(3) $-3 w\left(w^{2}-4\right)$
$3 x \times 2 x=6 x^{2}$
$3 x \times-y=-3 x y$
$3 x \times+7=+21 x$
$\begin{aligned}-2 \times 3 t & =-6 t \\ -2 \times+5 & =-10\end{aligned}$
$-3 w \times w^{2}=-3 w^{3}$
$-3 w \times-4=+12 w$
$=6 x^{2}-3 x y+21 x$
$=-6 t-10$
$=-3 w^{3}+12 w$

Fully simplify:
(4) $2 t(3-t)+5 t^{2}$
(5) $5-3(n-2)$
$=6 t-2 t^{2}+5 t^{2}$
$=5-3 n+6$
$=6 t+3 t^{2}$
$=5+6-3 n$
$=11-3 n$

DOUBLE BRACKETS

(1) $(3 x+2)(2 x-5)$
"FOIL"
$(3 x+2)(2 x-5)$
$=3 x(2 x-5)+2(2 x-5)$
$=6 x^{2}-15 x+4 x-10$
$=6 x^{2}-11 x-10$
or

$$
\begin{aligned}
& =6 x^{2}-15 x+4 x-10 \\
& =6 x^{2}-11 x-10
\end{aligned}
$$

(2) $(2 t-3)^{2}$
$=(2 t-3)(2 t-3)$
$=2 t(2 t-3)-3(2 t-3)$
$=4 t^{2}-6 t-6 t+9$
$=4 t^{2}-12 t+9$
(3) $(w+2)\left(w^{2}-3 w+5\right)$

$$
\begin{aligned}
& =w\left(w^{2}-3 w+5\right)+2\left(w^{2}-3 w+5\right) \\
& =w^{3}-3 w^{2}+5 w+2 w^{2}-6 w+10 \\
& =w^{3}-3 w^{2}+2 w^{2}+5 w-6 w+10 \\
& =w^{3}-w^{2}-w+10
\end{aligned}
$$

FACTORSATION

COMMON FACTORS

Factors: divide into a number without a remainder. Factors of a number come in pairs. For example,

$$
\begin{aligned}
12 & =1 \times 12=2 \times 6=3 \times 4 & & \text { factors of } 12 \text { are } 1,2,3,4,6,12 \\
18 & =1 \times 18=2 \times 9=3 \times 6 & & \text { factors of } 18 \text { are } 1,2,3,6,9,18 \\
4 a & =1 \times 4 a=2 \times 2 a=4 \times a & & \text { factors of } 4 a \text { are } 1,2,4, a, 2 a, 4 a \\
2 a^{2} & =1 \times 2 a^{2}=2 \times a^{2}=a \times 2 a & & \text { factors of } 2 a^{2} \text { are } 1,2, a, 2 a, a^{2}, 2 a^{2}
\end{aligned}
$$

Highest Common Factor(HCF): the highest factors numbers share.
For example,
from the above lists of factors: $\quad \operatorname{HCF}(12,18)=6 \quad \operatorname{HCF}\left(4 a, 2 a^{2}\right)=2 a$

Factorisation: HCFs are used to write expressions in fully factorised form.
Examples:
Factorise fully:
(1) $12 x+18 y$
(2) $4 a-2 a^{2}$
$6 \times 2 x+6 \times 3 y$ using $\operatorname{HCF}(12,18)=6$
$2 a \times 2-2 a \times a$ using $\operatorname{HCF}\left(4 a, 2 a^{2}\right)=2 a$
$=6(2 x+3 y)$
$=2 a(2-a)$

NOTE: the following answers are factorised but not fully factorised:

$$
\begin{array}{ll}
2(6 x+9 y) & 2\left(2 a-a^{2}\right) \\
3(4 x+6 y) & a(4-2 a)
\end{array}
$$

DIFFERENCE OF TWO SQUARES

Rule: $\quad a^{2}-b^{2}=(a+b)(a-b)$ check: $(a+b)(a-b)=a(a-b)+b(a-b)=a^{2}-a b+a b-b^{2}=a^{2}-b^{2}$

Examples:
Factorise fully:
(1) $4 x^{2}-9$
(2) $t^{2}-1$
(3) $n^{4}-1$
$=(2 x)^{2}-3^{2}$
$=t^{2}-1^{2}$
$=\left(n^{2}\right)^{2}-1^{2}$
$=(2 x+3)(2 x-3)$
$=(t+1)(t-1)$
$=\left(n^{2}+1\right)\left(n^{2}-1\right)$
$=\left(n^{2}+1\right)(n+1)(n-1)$
common factor first
(4) $8 x^{2}-18$
(5) $t^{3}-t$
$=2\left(4 x^{2}-9\right)$
$=t\left(t^{2}-1\right)$
$=2(2 x+3)(2 x-3)$
$=t(t+1)(t-1)$

TRINOMIALS $a x^{2}+b x+c, a=1 \quad$ ie. $1 x^{2}$
(Quadratic Expressions)
$a x^{2}+b x+c=(x+?)(x+?) \quad$ The missing numbers: are a pair of factors of c sum to b
Examples:
Factorise fully:
(1) $x^{2}+5 x+6$
(2) $x^{2}-5 x+6$
(3) $x^{2}-5 x-6$
$1 \times 6=2 \times 3=6$
$2+3=5$
use +2 and +3

$$
-1,-6 \text { or }-2,-3
$$

$$
-1,6 \text { or } 1,-6 \text { or }-2,3 \text { or } 2,-3
$$

$$
-2+(-3)=-5
$$

$$
1+(-6)=-5
$$

$$
\text { use }-2 \text { and }-3
$$

$$
\text { use }+1 \text { and }-6
$$

$=(x+2)(x+3)$
$=(x-2)(x-3)$
$=(x+1)(x-6)$

TRINOMIALS $a x^{2}+b x+c, a \neq 1$
Carry out a procedure which is a reversal of bracket breaking.
Examples:
(1) factorise $2 t^{2}+7 t+6$

$2 t^{2}+7 \mathbf{t}+6$
$=2 t^{2}+\mathbf{4 t}+\mathbf{3 t}+6 \quad$ replace $+7 t$ by $+4 t+3 t \quad(o r+3 t+4 t)$
$=\left(2 t^{2}+4 t\right)+(3 t+6) \quad$ bracket first and last pairs of terms
$=2 t(\mathbf{t}+\mathbf{2})+3(\mathbf{t}+\mathbf{2}) \quad$ factorise each bracket using HCF
$=(2 t+3)(\mathbf{t}+2) \quad$ factorise: brackets are common factor
(2) factorise $2 t^{2}-7 t+6$ Watch! Take care with negative signs outside brackets.

	$2 \times 6=12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{3+4=7}$
	$2 t^{2}-\mathbf{7} \mathbf{t}+6$
$=$	$2 t^{2}-\mathbf{4} \mathbf{t}-\mathbf{3 t}+6 \quad$ replace $-7 t$ by $-4 t-3 t \quad($ or $-3 t-4 t)$
$=$	$\left(2 t^{2}-4 t\right)-(3 t-6) \quad$ notice sign change in 2 nd bracket,+6 to -6
$=$	$2 t(\mathbf{t}-\mathbf{2})-3(\mathbf{t}-\mathbf{2})$
$=$	$(2 t-3)(\mathbf{t}-\mathbf{2})$

(3) factorise $2 t^{2}-11 t-6$

ALTERNATIVE METHOD:

Try out the possible combinations of the factors which could be in the brackets.
Examples: same quadratic expressions as the previous page.
(1) factorise $2 t^{2}+7 t+6$
$2 \times 6=12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{3+4=7}$
$2 t^{2}+\underline{\underline{7}}+6$ try combinations so that $3 t$ and $4 t$ are obtained
factors of $2 t^{2}: 2 t, t$
factors of 6: 1,6 or 2,3

$2 t^{2}+7 t+6$ has no common factor.
These have so can be ruled out

$3 t$

$$
(2 t+3)(t+2)
$$

(2) factorise $2 t^{2}-7 t+6$
exactly as example (1) except $-7 t$ requires both negative, so -3 , -2
(3) factorise $2 t^{2}-11 t-6$
$2 \times(-6)=-12$ pairs of factors $\underbrace{1,12 \text { or } 2,6 \text { or } 3,4}_{-12+1=-11}$ one factor is negative

$1 t \quad-12 t$ J
$(2 \mathrm{t}+1)(\mathrm{t}-6)$

$2 t^{2}-11 t-6$ has no common factor. These have so can be ruled out

$3 t$

UNIT 1: PROPERTIES OF THE CIRCLE

angle in a semicircle the perpendicular bisector is a right-angle.
of a chord is a diameter.
a tangent and the radius drawn to the point of contact form a right-angle.

ANGLES
Examples:
(1)

radius $O A=O B$ so $\triangle A O B$ is isosceles and \triangle angle sum 180° :
$\angle O B A=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ}$
tangent $C D$ and radius $O B: \angle O B C=90^{\circ}$

Calculate the size of angle $\mathrm{ABC} . \quad \angle A B C=90^{\circ}-30^{\circ}=60^{\circ}$
(2)

diameter $A B$ bisects chord $C D: \angle A M D=90^{\circ}$
$\triangle A M D$ angle sum 180° :
$\angle A D M=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
angle in a semicircle : $\angle A D B=90^{\circ}$
Calculate the size of angle BDC. $\angle B D C=90^{\circ}-60^{\circ}=30^{\circ}$

PYTHAGORAS' THEOREM

Example:

A circular road tunnel, radius 10 metres, is cut through a hill.

The road has a width 16 metres.
Find the height of the tunnel.

the diameter drawn is the perpendicular bisector of the chord: Δ is right-angled so can apply Pyth. Thm.

$$
\begin{aligned}
x^{2} & =10^{2}-8^{2} \\
& =100-64 \\
& =36 \\
x & =\sqrt{36} \\
x & =6
\end{aligned}
$$

$$
h=x+10
$$

$$
=6+10
$$

$$
h=16
$$

$$
\text { height } 16 \text { metres }
$$

SECTORS

$\frac{\angle A O B}{\angle C O D}=\frac{\operatorname{arc} A B}{\text { arc } C D}=\frac{\text { area of sector } A O B}{\text { area of sector } C O D} \quad \frac{\angle A O B}{360^{\circ}}=\frac{\text { arc } A B}{\pi d}=\frac{\text { area of sector } A O B}{\pi r^{2}}$

Choose the appropriate pair of ratios based on:
(i) the ratio which includes the quantity to be found
(ii) the ratio for which both quantities are known (or can be found).

Examples:
(1) Find the exact length of major arc AB.

$$
\begin{align*}
& \frac{\angle A O B}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi d} \\
& \begin{aligned}
& \frac{240^{\circ}}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi \times 12} \\
& \begin{aligned}
\operatorname{arc} A B & =\frac{240^{\circ}}{360^{\circ}} \times \pi \times 12 \\
& =8 \pi \mathrm{~cm}
\end{aligned}
\end{aligned} . \begin{array}{l}
25 .
\end{array}
\end{align*}
$$

diameter $d=2 \times 6 \mathrm{~cm}=12 \mathrm{~cm}$
reflex $\angle A O B=360^{\circ}-120^{\circ}=240^{\circ}$

(2) Find the size of angle AOB .

$$
\begin{aligned}
& \frac{\angle A O B}{360^{\circ}}=\frac{\text { area of sector } A O B}{\pi r^{2}} \\
& \begin{aligned}
{\left[\begin{array}{ll}
\angle A O B \\
360^{\circ}
\end{array}\right.} & =\frac{84}{\pi \times 9 \times 9} \\
\angle A O B & =\frac{84}{\pi \times 9 \times 9} \times 360^{\circ} \\
& =118 \cdot 835 \ldots
\end{aligned} \\
& \angle A O B
\end{aligned} \begin{aligned}
& \angle 119^{\circ}
\end{aligned}
$$

(3) Find the exact area of sector AOB .
A

$$
\begin{aligned}
\frac{\operatorname{arc} A B}{\pi d} & =\frac{\text { area of sector } A O B}{\pi r^{2}} \\
\frac{24}{\pi \times 12} & =\frac{\text { area of sector } A O B}{\pi \times 6 \times 6}
\end{aligned}
$$

$$
\text { area of sector } \begin{aligned}
A O B & =\frac{24}{\pi \times 12} \times \pi \times 6 \times 6 \\
& =72 \mathrm{~cm}^{2}
\end{aligned}
$$

(4) Find the exact area of sector AOB .

$$
\begin{aligned}
\frac{\operatorname{arc} A B}{\operatorname{arc} C D}= & \frac{\text { area of sector } A O B}{\text { area of sector } C O D} \\
\frac{3}{2} & =\frac{\text { area of sector } A O B}{4}
\end{aligned}
$$

area of sector $A O B=\frac{3}{2} \times 4$

$$
=6 \mathrm{~cm}^{2}
$$

UNIT 2: TRIGONOMETRY

SOH-CAH-TOA

The sides of a right-angled triangle are labelled:
Opposite: opposite the angle a°.
Adjacent: next to the angle a°.
Hypotenuse: opposite the right angle.
The ratios of sides $\frac{\mathrm{O}}{\mathrm{H}}, \frac{\mathrm{A}}{\mathrm{H}}$ and $\frac{\mathrm{O}}{\mathrm{A}}$ have values which depend on the size of angle a°.
These are called the sine, cosine and tangents of a°, written $\sin \mathrm{a}^{\circ}, \cos \mathrm{a}^{\circ}$ and $\tan \mathrm{a}^{\circ}$.
For example,

FINDING AN UNKNOWN SIDE

Examples:
(1) Find x.

$$
S=\frac{O}{H}
$$

know H, find O SO J JJ J
sine ratio uses O and H

ensure calculator set to DEGREES
$x=10 \times \sin 40^{\circ}$
$=6 \cdot 427 \ldots$.
$x=6 \cdot 4$
(2) Find y.

$$
C=\frac{A}{H}
$$

know A, find H

cosine ratio uses A and H

$$
\begin{aligned}
y & =\frac{4}{\cos 55^{\circ}} \quad \begin{array}{c}
4 \div \cos 55^{\circ} \\
\text { calculator set } \\
\text { to DEGREES }
\end{array} \\
& =6 \cdot 973 \ldots \\
y & =7 \cdot 0
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

Example:

Find x.

$$
T=\frac{O}{A}
$$

tangent ratio uses O and A

$$
\begin{aligned}
\tan x^{\circ} & =\frac{9}{7} \\
x & =\tan ^{-1}\left(\frac{9}{7}\right) \quad \begin{array}{l}
\text { use brackets } \\
\text { for }(9 \div 7), \\
\text { calculator set } \\
\text { to DEGREES }
\end{array} \\
& =52 \cdot 125 \ldots \\
x & =52 \cdot 1
\end{aligned}
$$

SINE RULE

NOTE: requires at least one side and its opposite angle to be known.

FINDING AN UNKNOWN SIDE

Example:

relabel triangle with a as uknown side
known angle/side pair labelled B and b

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{a}{\sin 43^{\circ}} & =\frac{6}{\sin 55^{\circ}} \\
a & =\frac{6}{\sin 55^{\circ}} \times \sin 43^{\circ} \\
& =4.995 \ldots . . \\
Q R & \approx 5.0 \mathrm{~m}
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

Example:

Find the size of angle PQR .
cannot find angle PQR directly but can find angle QPR first
relabel triangle with A as uknown angle QPR
known angle/side pair labelled B and b
use the Sine Rule with the angles on the 'top'

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{5} & =\frac{\sin 55^{\circ}}{6} \\
\sin A & =\frac{\sin 55^{\circ}}{6} \times 5 \\
& =0 \cdot 682 \ldots . \\
A & =\sin ^{-1} 0 \cdot 682 \ldots \ldots \\
\angle Q P R & =43 \cdot 049 \ldots .
\end{aligned}
$$

$$
\begin{aligned}
\angle P Q R & =180-55-43 \cdot 049 \ldots . . \\
& =81 \cdot 950 \ldots .
\end{aligned}
$$

$$
\angle P Q R \approx 82 \cdot 0^{\circ}
$$

COSINE RULE

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

FINDING AN UNKNOWN SIDE $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
NOTE: requires knowing 2 sides and the angle between them.
Example:

Find the length of side PR.
relabel triangle with a as uknown side
known sides labelled b and c , it doesn't matter which one is b or c

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =6^{2}+5^{2}-2 \times 6 \times 5 \times \cos 82^{\circ} \\
a^{2} & =52 \cdot 649 \ldots . \\
a & =\sqrt{52 \cdot 649 \ldots . .} \\
& =7 \cdot 256 \ldots . \\
P R & =7 \cdot 3 m
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
NOTE: requires knowing all 3 sides.

Example:

Find the size of angle PQR.
relabel the triangle with A as the uknown angle and a as its opposite side other sides labelled b and c , it doesn't matter which one is b or c

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{6^{2}+5^{2}-9^{2}}{2 \times 6 \times 5} \\
& =\frac{-20}{60} \\
\cos A & =-0 \cdot 333 \ldots . . \\
A & =\cos ^{-1}(-0 \cdot 333 \ldots .) \\
& =109 \cdot 471 \ldots .
\end{aligned}
$$

$$
\angle P Q R=109 \cdot 5^{\circ}
$$

Area $\triangle A B C=\frac{1}{2} b c \sin A$

NOTE: requires knowing 2 sides and the angle between them.

Example:

Find the area of triangle PQR .
relabel triangle with A as the known angle between 2 known sides
the 2 known sides labelled b and c , it doesn't matter which one is b or c

$$
\begin{aligned}
\text { Area } \triangle A B C & =\frac{1}{2} b c \sin A \\
& =\frac{1}{2} \times 6 \times 5 \times \sin 82^{\circ} \\
& =14 \cdot 854 \ldots . \\
\text { Area } & =14 \cdot 8 \mathrm{~m}^{2}
\end{aligned}
$$

UNIT 2: SIMULTANEOUS LINEAR EQUATIONS

EQUATION OF A LINE

The equation gives a rule connecting the x and y coordinates of any point on the line.
For example,

$$
2 x+y=6
$$

sample points:
$(0,6)$
$x=0, y=6$
$2 \times 0+6=6$
$x=3, y=0$
$2 \times 3+0=6$
$(-2,10)$
$x=-2, y=10$
$2 \times(-2)+10=6$
$x=\frac{1}{2}, y=5$
$2 \times \frac{1}{2}+5=6$

Infinite points cannot be listed but can be shown as a graph.

SKETCHING STRAIGHT LINES

Show where the line meets the axes.
Example:
Sketch the graph with equation $3 x+2 y=12$.

$$
\begin{array}{rlrl}
3 x+2 y & =12 & \\
3 \times 0+2 y & =12 & \text { substituted for } x=0 \\
2 y & =12 & \\
y & =6 & & \text { plot }(0,6) \\
3 x+2 y & =12 & \\
3 x+2 \times 0 & =12 & \text { substituted for } y=0 \\
3 x & =12 & \\
x & =4 & & \text { plot }(4,0)
\end{array}
$$

SOLVE SIMULTANEOUS EQUATIONS: GRAPHICAL METHOD

Sketch the two lines and the point of intersection is the solution.
Example:
Solve graphically the system of equations: $y+2 x=8$

$$
y-x=2
$$

$$
\begin{align*}
y+2 x & =8 & & \tag{1}\\
y+2 \times 0 & =8 & & \text { substituted for } x=0 \tag{2}\\
y & =8 & & \text { plot }(0,8)
\end{align*}
$$

$$
\begin{array}{rll}
y+2 x & =8 & \\
0+2 x & =8 & \tag{2}\\
\text { substituted for } y=0 \\
2 x & =8 & \\
x & =4 & \\
\text { plot }(4,0)
\end{array}
$$

$$
\begin{aligned}
y-x & =2 & & \\
y-0 & =2 & & \text { substituted for } x=0 \\
y & =2 & & \operatorname{plot}(0,2)
\end{aligned}
$$

$$
\begin{aligned}
y-x & =2 \\
0-x & =2 \quad \text { substituted for } y=0 \\
-\mathrm{x} & =2 \\
\mathrm{x} & =-2 \quad \operatorname{plot}(-2,0)
\end{aligned}
$$

point of intersection $(2,4)$

CHECK:
$x=2$ and $y=4$
substituted in both equations

$$
\begin{align*}
& y+2 x=8 \tag{1}\\
& y-x=2 \tag{2}\\
& 4+2 \times 2=8 \\
& 8=8 \\
& 4-2=2 \\
& 2=2
\end{align*}
$$

SOLUTION:
$x=2$ and $y=4$

SOLVE SIMULTANEOUS EQUATIONS: SUBSTITUTION METHOD

Rearrange both equations to $y=$ and equate the two equations.

$$
(\text { or } x=)
$$

Example:
Solve algebraically the system of equations: $y+2 x=8$

$$
y-x=2
$$

$$
\begin{align*}
y+2 x & =8 \tag{1}\\
y & =8-2 x
\end{align*}
$$

$$
\begin{align*}
y-x & =2 \tag{2}\\
y & =x+2
\end{align*}
$$

$x+2=8-2 x$
$3 x+2=8$
$3 x=6$

$$
x=2
$$

$$
\begin{align*}
y & =x+2 \tag{2}\\
& =2+2 \\
y & =4
\end{align*}
$$

CHECK:

$$
\begin{aligned}
y+2 x & =8 & \text { (1) } & \\
4+2 \times 2 & =8 & & \text { using the other equation } \\
8 & =8 & & \text { substituted for } x=2 \text { and } y=4
\end{aligned}
$$

SOLUTION:

$$
x=2 \text { and } y=4
$$

can choose to rearrange to $y=$ or $x=$ choosing $y=$ avoids fractions as $x=4-\frac{1}{2} y$
rearrange for $y=$
y terms equal
can choose either equation (1) or (2)
substituted for $x=2$

Can add or subtract multiples of the equations to eliminate either the x or y term.
Example:
Solve algebraically the system of equations: $4 x+3 y=5$

$$
5 x-2 y=12
$$

$\begin{aligned} 4 x+3 y & =5 \\ 5 x-2 y & =12 \end{aligned}$	$\begin{aligned} & \text { (1) } \times 2 \\ & \text { (2) } \times 3 \end{aligned}$	can choose to eliminate x or y term choosing y term, LCM $(3 y, 2 y)=6 y$ (least common multiple)
$8 x+6 y=10$	(3)	multiplied each term of (1) by 2 for $+6 y$
$15 x-6 y=36$	(4)	multiplied each term of (2) by 3 for - 69
$23 x+0=46$	(3) + (4)	added "like" terms,
$x=2$		$+6 y$ and $-6 y$ added to 0 (ie eliminated)
$4 x+3 y=5$	(1)	can choose either equation (1) or (2)
$4 \times 2+3 y=5$		substituted for $x=2$
$8+3 y=5$		
$3 y=-3$		
$y=-1$		

CHECK:

$5 x-2 y=12$
$5 \times 2-2 \times(-1)=12$
$10-(-2)=12$
$12=12$

SOLUTION:
$x=2$ and $y=-1$
using the other equation
substituted for $x=2$ and $y=-1$

UNIT 2: GRAPHS, CHARTS AND TABLES

Studying statistical information, it is useful to consider: (1) typical result: average
(2) distribution of results: spread

AVERAGES:

$$
\begin{aligned}
\text { mean } & =\frac{\text { total of all results }}{\text { number of results }} \\
\text { median } & =\text { middle result of the ordered results } \\
\text { mode } & =\text { most frequent result }
\end{aligned}
$$

SPREAD:

Ordered results are split into 4 equal groups so each contains 25% of the results.
The 5 figure summary identifies: $L, Q_{1}, Q_{2}, Q_{3}, H$ (lowest result , 1st , 2nd and 3rd quartiles, highest result)

A Box Plot is a statistical diagram that displays the 5 figure summary:

$$
\text { range, } R=H-L
$$

interquartile range, $I Q R=Q_{3}-Q_{1}$
semi-interquartile range, $\operatorname{SIQR}=\frac{Q_{3}-Q_{1}}{2}$

NOTE: If Q_{1}, Q_{2} or Q_{3} fall between two results, the mean of the two results is taken.
For example,
12 ordered results: split into 4 equal groups of 3 results

\[

\]

Example:
Pulse rates: $66,64,71,56,60,79,77,75,69,73,75,62,66,71,66$ beats per minute.

15 ordered results:

5 Figure Summary:

$$
L=56 \quad, \quad Q_{1}=64 \quad, \quad Q_{2}=69 \quad, \quad Q_{3}=75 \quad, \quad H=79
$$

Box Plot:

Spread:

$$
\begin{aligned}
& R=H-L=79-56=23 \\
& I Q R=Q_{3}-Q_{1}=75-64=11 \\
& S I Q R=\frac{Q_{3}-Q_{1}}{2}=\frac{75-64}{2}=\frac{11}{2}=5 \cdot 5
\end{aligned}
$$

Averages: $\quad($ total $=66+64+71+\ldots+66=1030)$

$$
\text { MEAN }=\frac{1030}{15}=68 \cdot 666 \ldots=68 \cdot 7
$$

$$
\left(Q_{2}\right) M E D I A N=69
$$

$$
M O D E=66
$$

OTHER STATISTICAL DIAGRAMS

Examples:
A school records the daily absences for a week.

DAY	Monday	Tuesday	Wednesday	Thursday	Friday
ABSENCES	20	40	30	10	20

bar graph:
School Absences

line graph:

pie chart:

total absences $=120$

$$
\text { M } \quad \frac{20}{120} \times 360^{\circ}=60^{\circ}
$$

$$
T \quad \frac{40}{120} \times 360^{\circ}=120^{\circ}
$$

$$
W \quad \frac{30}{120} \times 360^{\circ}=90^{\circ}
$$

$$
\text { Th } \quad \frac{10}{120} \times 360^{\circ}=30^{\circ}
$$

$$
F \quad \frac{20}{120} \times 360^{\circ}=60^{\circ}
$$

ordered stem-and-leaf:

Race Times (seconds):
$10 \cdot 4,10 \cdot 2,9 \cdot 9,12 \cdot 1,11 \cdot 7,10 \cdot 9,9 \cdot 9,11 \cdot 4,10 \cdot 6,11 \cdot 5,10 \cdot 1,9 \cdot 8,10 \cdot 2,11 \cdot 3,11 \cdot 0$

dot plot:

Car speeds (mph):

FREQUENCY DISTRIBUTION TABLES

Useful for dealing with a large number of results.

Example:
In a competition 50 people take part.
The table shows the distribution of points scored.
Scores (points)

result	frequency
10	4
11	5
12	9
13	12
14	10
15	7
16	3

mean:

result	frequency	result \times frequency
10	4	40
11	5	55
12	9	108
13	12	156
14	10	140
15	7	105
16	3	48
TOTALS	50	652

cummulative frequency:

UNIT 2: USE OF SIMPLE STATISTICS

STANDARD DEVIATION

Is a measure of the spread (dispersion) of a set of data, giving a numerical value to how the data deviates from the mean.

Formulae:

mean $\bar{x}=\frac{\sum x}{n}$
standard deviation $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
$s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$

Examples,
(1) High Standard Deviation: results spread out

mean $=38$, standard deviation $=7.5$
(2) Low Standard Deviation: results clustered around the mean

mean $=38$, standard deviation $=3 \cdot 8$

Calculations for Example (2):

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
30	-8	64
33	-5	25
34	-4	16
35	-3	9
36	-2	4
36	-2	4
37	-1	1
37	-1	1
37	-1	1
38	0	0
38	0	0
38	0	0
38	0	0
39	+1	1
39	+1	1
40	+2	4
41	+3	9
44	+6	36
44	+6	36
46	+8	64
760	0	276

$$
\begin{array}{rlrl}
s & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \\
\bar{x}=\frac{\sum x}{n} & & =\sqrt{\frac{276}{19}} \\
& =\frac{760}{20} & & =\sqrt{14 \cdot 526 \ldots} \\
& =38 & & =3 \cdot 811 \ldots \\
& & \approx 3.8
\end{array}
$$

SCATTERGRAPHS AND LINE OF BEST FIT

Example:
 The amount of salt that dissolves at different temperatures is recorded and a graph plotted.

The best-fitting straight line through the points is drawn.

The equation of the graph is of the form

$$
\mathrm{W}=\mathrm{mT}+\mathrm{C} .
$$

Find the equation of the line and use the equation to calculate the mass of salt that will dissolve at $30^{\circ} \mathrm{C}$.

using two well-separated points on the line
$\begin{aligned} & (16,6 \cdot 0) \\ & (12,5 \cdot 4)\end{aligned} \quad m=\frac{6 \cdot 0-5 \cdot 4}{16-12}=\frac{0 \cdot 6}{4}=0 \cdot 15$

$$
\begin{aligned}
y & =m x+C \\
W & =0 \cdot 15 T+C
\end{aligned}
$$

substituting for one point on the line $(16,6 \cdot 0)$

$$
\begin{aligned}
6 \cdot 0 & =0 \cdot 15 \times 16+C \\
6 \cdot 0 & =2 \cdot 4+C \\
C & =3 \cdot 6 \\
W & =0 \cdot 15 T+3 \cdot 6
\end{aligned}
$$

$$
\begin{aligned}
T=30 \quad W= & 0 \cdot 15 \times 30+3 \cdot 6 \\
= & 4 \cdot 5+3 \cdot 6 \\
= & 8 \cdot 1 \\
& 8 \cdot 1 \mathrm{grams}
\end{aligned}
$$

PROBABILITY

The probability of an event A occuring is $\quad P(A)=\frac{\text { number of outcomes involving } A}{\text { total number of outcomes possible }}$
Always $0 \leq \mathrm{P} \leq 1$ and $\mathrm{P}=0$ impossible to occur, $\mathrm{P}=1$ certain to occur
The experimental results will differ from the theoretical probability.

Examples:
(1) A letter is chosen at random from the word ARITHMETIC.

4 vowels out of 10 letters,

$$
P(\text { vowel })=\frac{4}{10}=0 \cdot 4
$$

(2) In an experiment a letter is chosen at random from the word ARITHMETIC and the results recorded.

letter	frequency	relative frequency
vowel	37	$37 \div 100=0.37$
consonant	63	$63 \div 100=0.63$
	total $=100$	total $=1$

Estimate of probability,

$$
P(\text { vowel })=0 \cdot 37
$$

UNIT 3: MORE ALGEBRAIC OPERATIONS

ALGEBRAIC FRACTIONS

Examples:
SIMPLIFYING: fully factorise and 'cancel' common factors.
(1) $\frac{x^{2}-9}{x^{2}+2 x-3}$
(2) $\frac{x-3}{2 x^{2}-6 x}$
(3) $\frac{3 a^{2} b}{3 a^{2}+3 a b}$
$=\frac{(x-3)(x+3)}{(x-1)(x+3)}$
$=\frac{1(x-3)}{2 x(x-3)}$
$=\frac{3 a \times a b}{3 a(a+b)}$
$=\frac{x-3}{x-1}$
$=\frac{1}{2 x}$
$=\frac{a b}{a+b}$

ADD/SUBTRACT: a common denominator is required.
(4) $\frac{3}{2 y}-\frac{4}{y^{2}}$
(5) $\frac{3}{x-3}-\frac{3}{x+3}$
$=\frac{3 y}{2 y^{2}}-\frac{8}{2 y^{2}}$
$=\frac{3(x+3)}{(x-3)(x+3)}-\frac{3(x-3)}{(x-3)(x+3)}$
$=\frac{3 y-8}{2 y^{2}}$
$=\frac{3 x+9-3 x+9}{(x-3)(x+3)}$
$=\frac{18}{(x-3)(x+3)}$

MULTIPLY/DIVIDE:

(6) $\frac{3}{2(x+3)} \times \frac{(x+3)^{2}}{9}$
(7) $\frac{2}{y} \div \frac{4}{y^{2}}$
$=\frac{3(x+3)^{2}}{18(x+3)}$
$=\frac{2}{y} \times \frac{y^{2}}{4}$
$=\frac{3(x+3) \times(x+3)}{3(x+3) \times 6}$

$$
=\frac{2 y^{2}}{4 y}
$$

$$
=\frac{y \times 2 y}{2 \times 2 y}
$$

$$
=\frac{y}{2}
$$

TRANSPOSING FORMULAE (CHANGE OF SUBJECT)

Follow the rules for equations to isolate the target term and then the target letter. (has target letter)

addition and subtraction

$$
x+a=b
$$

subtract a from each side

$$
x=b-a
$$

$$
x-a=b
$$

add a to each side

$$
x=b+a
$$

multiplication and division

$$
\frac{x}{a}=b
$$

multiply each side by a

$$
x=a b
$$

powers and roots

$$
x^{2}=a
$$

square root each side

$$
x=\sqrt{a}
$$

$$
a x=b
$$

divide each side by a

$$
x=\frac{b}{a}
$$

$$
\sqrt{x}=a
$$

square each side

$$
x=a^{2}
$$

Examples:
Change the subject of the formula to r :
(1) $F=3 r^{2}+p$
(2) $W=\frac{\sqrt{r}-n}{t}$
subtract p from each side
$F-p=3 r^{2}$
divide each side by 3
$\frac{F-p}{3}=r^{2}$
square root both sides
$\sqrt{\frac{F-p}{3}}=r$
subject of formula now r

$$
r=\sqrt{\frac{F-p}{3}}
$$

multiply both sides by t

$$
W t=\sqrt{r}-n
$$

add n to both side
$W t+n=\sqrt{r}$
square both sides
$(W t+n)^{2}=r$
subject of formula now r
$r=(W t+n)^{2}$

SURDS

NUMBER SETS:

Natural numbers $\quad \mathrm{N}=\{1,2,3 \ldots\}$
Whole numbers $\quad \mathrm{W}=\{0,1,2,3 \ldots\}$
Integers $Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$

Rational numbers, Q , can be written as a division of two integers.
Irrational numbers cannot be written as a division of two integers.
Real numbers, R , are all rational and irrational numbers.

SURDS ARE IRRATIONAL ROOTS.
For example, $\sqrt{2}, \sqrt{\frac{5}{9}}, \sqrt[3]{16}$ are surds.
whereas $\sqrt{25}, \sqrt{\frac{4}{9}}, \sqrt[3]{-8}$ are not surds as they are $5, \frac{2}{3}$ and -2 respectively.

SIMPLIFYING SURDS:

RULES: $\quad \sqrt{m n}=\sqrt{m} \times \sqrt{n}$

$$
\sqrt{\frac{m}{n}}=\frac{\sqrt{m}}{\sqrt{n}}
$$

Examples:
(1) Simplify $\sqrt{24} \times \sqrt{3}$
(2) Simplify $\sqrt{72}+\sqrt{48}-\sqrt{50}$
$\sqrt{24} \times \sqrt{3}$
$=\sqrt{72}$
$=\sqrt{36} \times \sqrt{2} \quad$ square number which is a factor of 72
$=6 \times \sqrt{2}$
$=6 \sqrt{2}$

$$
\begin{aligned}
& \sqrt{72}+\sqrt{48}-\sqrt{50} \\
= & \sqrt{36} \times \sqrt{2}+\sqrt{16} \times \sqrt{3}-\sqrt{25} \times \sqrt{2} \\
= & 6 \sqrt{2}+4 \sqrt{3}-5 \sqrt{2} \\
= & 6 \sqrt{2}-5 \sqrt{2}+4 \sqrt{3} \\
= & \sqrt{2}+4 \sqrt{3}
\end{aligned}
$$

(3) Remove the brackets and fully simplify:
(a) $(\sqrt{3}-\sqrt{2})^{2}$
(b) $(3 \sqrt{2}+2)(3 \sqrt{2}-2)$
$=(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})$
$=(3 \sqrt{2}+2)(3 \sqrt{2}-2)$
$=\sqrt{3}(\sqrt{3}-\sqrt{2})-\sqrt{2}(\sqrt{3}-\sqrt{2})$
$=3 \sqrt{2}(3 \sqrt{2}-2)+2(3 \sqrt{2}-2)$
$=\sqrt{9}-\sqrt{6}-\sqrt{6}+\sqrt{4}$
$=9 \sqrt{4}-6 \sqrt{2}+6 \sqrt{2}-4$
$=3-\sqrt{6} \quad-\quad \sqrt{6}+2$
$=18-6 \sqrt{2}+6 \sqrt{2}-4$
$=\quad 5-2 \sqrt{6}$
$=14$

RATIONALISING DENOMINATORS:

Removing surds from the denominator.
Examples:
Express with a rational denominator:
(1) $\frac{4}{\sqrt{6}}$
(2) $\frac{\sqrt{3}}{3 \sqrt{2}}$
$\frac{4}{\sqrt{6}}$
$\frac{\sqrt{3}}{3 \sqrt{2}}$
$=\frac{4 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \quad \begin{aligned} & \text { multiply the 'top' and ' bottom' } \\ & \text { by the surd on the denominator }\end{aligned}$
$=\frac{\sqrt{3} \times \sqrt{2}}{3 \sqrt{2} \times \sqrt{2}}$
$=\frac{4 \sqrt{6}}{6}$
$=\frac{\sqrt{6}}{3 \times \sqrt{4}}$
$=\frac{2 \sqrt{6}}{3}$

$$
=\frac{\sqrt{6}}{6}
$$

INDICES

base $\longrightarrow a^{n} \longleftarrow$ index or exponent

INDICES RULES: require the same base.

$$
\begin{array}{rlrl}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} & \frac{w^{2} \times w^{5}}{w^{3}}=\frac{w^{7}}{w^{3}}=w^{4} \\
\left(a^{m}\right)^{n} & =a^{m n} & \left(3^{5}\right)^{2}=3^{10} \\
(a b)^{n} & =a^{n} b^{n} & \left(2 a^{3} b\right)^{2}=2^{2} a^{6} b^{2}=4 a^{6} b^{2} \\
\frac{1}{a^{p}} & =a^{-p} & 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \\
a^{0} & =1 & \left(2 b^{3}\right)^{0}=1 \\
a^{\frac{m}{n}} & =\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} & 8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}=2^{4}=16 \\
8^{-\frac{4}{3}}=\frac{1}{8^{\frac{4}{3}}}=\frac{1}{16}
\end{array}
$$

UNIT 3: QUADRATIC FUNCTIONS

Form $y=a x^{2}+b x+c, a \neq 0$, where a, b and c are constants.
The graph is a curve called a PARABOLA.
For example,
$y=x^{2}-2 x-3$

\boldsymbol{x}	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
\boldsymbol{x}^{2}	4	1	0	1	4	9	16
$\mathbf{- 2 \boldsymbol { x }}$	4	2	0	-2	-4	-6	-8
$\mathbf{- 3}$	-3	-3	-3	-3	-3	-3	-3
\boldsymbol{y}	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{- 3}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{0}$	$\mathbf{5}$
points	$(-2,5)$	$(-1,0)$	$(0,-3)$	$(1,-4)$	$(2,-3)$	$(3,0)$	$(4,5)$

COMPLETED SQUARE:

Quadratic functions written in the form $y= \pm 1(x-a)^{2}+b, a$ and b are constants.
axis of symmetry
turning point
$x=a$
(a, b), minimum for +1 , maximum for -1

FACTORISED:

Quadratic functions written in the form $y=(x-a)(x-b), a$ and b are constants. the zeros of the graph are a and b.
the axis of symmetry is $x=\frac{a+b}{2}$
For example,
$y=x^{2}-2 x-3$ can be written as $y=(x-1)^{2}-4$ or $y=(x+1)(x-3)$
meets the x-axis where $y=0$
$(x+1)(x-3)=0$
$x+1=0 \quad$ or $\quad x-3=0$
$x=-1 \quad$ or $\quad x=3$
points $(-1,0)$ and $(3,0)$
the roots of the equation are -1 and 3 the zeros of the graph are -1 and 3 axis of symmetry: $\frac{-1+3}{2}, x=1$
meets the y-axis where $x=0$
$y=(0-1)^{2}-4=1-4=-3$
point $(0,-3)$
turning point: $y=+1(x-1)^{2}-4$
minimum turning point $(1,-4)$

axis of symmetry $x=1$

QUADRATIC EQUATIONS

An equation of the form $a x^{2}+b x+c=0, a \neq 0$, where a, b and c are constants. The value(s) of x that satisfy the equation are the roots of the equation.

FACTORISATION

If $b^{2}-4 a c=$ a square number ie. $0,1,4,9,16 \ldots .$.
then the quadratic expression can be factorised to solve the equation.
Examples:
Solve:
(1) $4 n-2 n^{2}=0$
(2) $2 t^{2}+t-6=0$
$2 n(2-n)=0$
$(2 t-3)(t+2)=0$
$2 n=0 \quad$ or $\quad 2-n=0$
$n=0 \quad$ or $\quad n=2$

$$
\begin{aligned}
2 t-3 & =0 \quad \text { or } \quad t+2=0 \\
2 \mathrm{t} & =3
\end{aligned}
$$

$$
t=\frac{3}{2} \quad \text { or } \quad t=-2
$$

The equation may need to be rearranged:
(3) $\quad(w+1)^{2}=2(w+5)$
(4) $x+2=\frac{15}{x}, x \neq 0$

$$
\begin{aligned}
w^{2}+2 w+1 & =2 w+10 \\
w^{2}-9 & =0 \\
(w+3)(w-3) & =0 \\
w+3=0 & \text { or }
\end{aligned} \quad w-3=0, ~ \begin{array}{rlrl}
w=-3 & \text { or } & w & =3 \\
w
\end{array}
$$

$$
x(x+2)=15
$$

$$
x^{2}+2 x=15
$$

$$
x^{2}+2 x-15=0
$$

$$
(x+5)(x-3)=0
$$

$$
x+5=0 \quad \text { or } \quad x-3=0
$$

$$
x=-5 \quad \text { or } \quad x=3
$$

QUADRATIC FORMULA

A quadratic equation $a x^{2}+b x+c=0$ can be solved using the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0
$$

Note: (1) Use a calculator!
(2) $b^{2}-4 a c$ will not be negative, otherwise there is no solution.

Example:

Find the roots of the equation $3 t^{2}-5 t-1=0$, correct to two decimal places.

$$
\begin{aligned}
& 3 t^{2}-5 t-1=0 \\
& a t^{2}+b t+c=0 \\
& a=3, b=-5, c=-1 \\
& b^{2}-4 a c=(-5)^{2}-4 \times 3 \times(-1)=37 \\
& -b=-(-5)=+5 \\
& 2 a=2 \times 3=6
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
t=\frac{5 \pm \sqrt{37}}{6}
$$

$$
=\frac{5-\sqrt{37}}{6} \quad \text { or } \quad \frac{5+\sqrt{37}}{6}
$$

$$
=\frac{-1 \cdot 0827 \ldots}{6} \text { or } \quad \frac{11 \cdot 0827 \ldots}{6}
$$

$$
t=-0 \cdot 1804 \ldots \text { or } \quad 1 \cdot 8471 \ldots \text {. }
$$

$$
\stackrel{\text { roots are }-0 \cdot 18 \text { and } 1 \cdot 85}{\underline{"}}
$$

UNIT 3: FURTHER TRIGONOMETRY

GRAPHS

Each graph has a PERIOD of 360° (repeats every 360°).
The maximum value of each function is +1 , the minimum is -1 . The cosine graph is the sine graph shifted 90° to the left.

The tangent graph has a PERIOD of 180°.
The maximum value is positive infinity , the minimum is negative infinity.

TRANSFORMATIONS Same rules for $y=\sin x^{\circ}$ and $y=\cos x^{\circ}$.

Y-STRETCH $\quad \mathrm{y}=\mathbf{n} \sin x^{\circ} \quad$ maximum value $+n$, minimum value $-n$.
X-STRETCH $y=\sin \mathbf{n} x^{\circ}$ has period $\frac{360^{\circ}}{n}$. There are n cycles in 360°.
For example,
(1)

(2)

period $90^{\circ}, 2$ cycles in 180°

X-SHIFT $\quad y=\sin (x+a)^{\circ}$ graph shifted $-\mathrm{a}^{\circ}$ horizontally.
For example,
(4)

EQUATIONS

Example:

The graphs with equations $y=5+3 \cos x^{\circ}$ and $y=4$ are shown.

$\begin{aligned} 5+3 \cos x^{\circ} & =4 \\ 3 \cos x^{\circ} & =-1 \\ \cos x^{\circ} & =-\frac{1}{3}\end{aligned}$
$x=109 \cdot 5$ or $250 \cdot 5$

* A,S, T, C is where functions are positive:

S	$\mathrm{A} \times$
$\cos -$	$\cos +$
$180-\mathrm{a}=109 \cdot 5$	$\mathrm{a}=\cos ^{-1} 1 / 3=70 \cdot 528 \ldots$
$180+\mathrm{a}=250 \cdot 5$	$360-\mathrm{a}=289 \cdot 5$
$\cos -$	$\cos +$
$/ \mathrm{T}$	$\mathrm{C} \times$

* A all functions are positive

S sine function only is positive
T cosine function only is positive
C tangent function only is positive

IDENTITIES

$$
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1 \quad \tan x^{\circ}=\frac{\sin x^{\circ}}{\cos x^{\circ}}
$$

Examples:
(1) If $\sin x^{\circ}=\frac{1}{2}$, without finding x, find the exact values of $\cos x^{\circ}$ and $\tan x^{\circ}$.

$$
\begin{array}{rlrl}
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ} & =1 & \tan x^{\circ} & =\frac{\sin x^{\circ}}{\cos x^{\circ}} \\
\left(\frac{1}{2}\right)^{2}+\cos ^{2} x^{\circ} & =1 & & =\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \\
\frac{1}{4}+\cos ^{2} x^{\circ} & =1 & \tan x^{\circ} & =\frac{1}{\sqrt{3}} \\
\cos ^{2} x^{\circ} & =\frac{3}{4} &
\end{array}
$$

(2) Show that $\frac{1-\cos ^{2} x^{\circ}}{\sin x \cos x^{\circ}}=\tan x$.

$$
\begin{aligned}
& \frac{1-\cos ^{2} x^{\circ}}{\sin x \cos x^{\circ}} \\
= & \frac{\sin ^{2} x^{\circ}}{\sin x \cos x^{\circ}} \quad \text { since } \sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1 \\
= & \frac{\sin x^{\circ} \sin x^{\circ}}{\sin x \cos x^{\circ}} \\
= & \frac{\sin x^{\circ}}{\cos x^{\circ} x^{\circ}=\sin ^{2} x^{\circ}} \\
= & \tan x
\end{aligned}
$$

