## 2014 Mathematics

## Intermediate 1 Units 1, 2 \& 3 Paper 2

## Finalised Marking Instructions

## © Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& 3 Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working’.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols $\checkmark$ and $\times$ are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Two: Mathematics Intermediate 1: Paper 2, Units 1, 2 and 3

|  | Expected Answer/s | $\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 1 | Ans: 875 ml <br> - ${ }^{1}$ find number of ml per orange: $500 \div 8=62 \cdot 5$ <br> - ${ }^{2}$ find amount of juice: $62.5 \times 14=875$ | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. Alternate strategies <br> (a) ${ }^{1} \quad 14 \div 8=1 \cdot 75$ <br> - ${ }^{2} \quad 1.75 \times 500=875$ <br> (b) $\bullet^{1} \quad 14 \div(8 \div 500)$ <br> - ${ }^{2} \quad 14 \div 0 \cdot 016=875$ <br> [ $8 \div 500$ is not enough for the $1^{\text {st }}$ mark] |
| 2 | Ans: $\mathbf{1 . 3} \times \mathbf{1 0}^{-5}$ <br> - ${ }^{1}$ correct coefficient: $1 \cdot 3$ <br> - ${ }^{2}$ correct power of ten: $1.3 \times 10^{-5}$ | 2 | 1. The second mark can be awarded for a consistent power of ten eg $13 \times 10^{-6}$ <br> 2. $13 \times 10^{-5}$ <br> award 0/2 |
| 3 | Ans: $\quad u<13$ <br> - ${ }^{1}$ collect constants: $5 u<65$ <br> -2 $\quad$ solve inequality for $u: u<13$ | 2 | 1. For answers without valid working award $1 / 2$ eg <br> (a) $u<13$ without working <br> (b) $5 \times 13+21<86 \rightarrow u<13$ <br> (c) $5 u=65 \rightarrow u<13$ <br> 2. Answers acceptable for partial credit (valid working must be shown) award $1 / 2$ <br> (a) $5 u<65 \rightarrow<13 \quad \checkmark x$ <br> (c) $5 u<65 \rightarrow u=13 \quad \checkmark x$ <br> (d) $5 u=65 \rightarrow u=13$ <br> (e) $5 u<107 \rightarrow u<21 \cdot 4$ |


| Question |  | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 4 | a | Ans: <br> - ${ }^{1}$ stem correct: <br> - ${ }^{2}$ all leaves on correct level: <br> -3 leaves ordered correctly | 3 | 1. Accept <br> (a) use of commas as bad form <br> (b) stem in descending order <br> (c) no line drawn between stem and leaves <br> (d) extra numbers in the stem <br> 2. Final mark is not available where there are more than two errors in the unordered diagram |
| 4 | b | Ans: $\mathbf{3 8} \mathbf{m p g}$ <br> - ${ }^{1}$ find median: 38 | 1 | Ensure 4 b is consistent with 4 a |
| 4 | c | Ans: $\mathbf{3 5} \mathbf{m p g}$ <br> - ${ }^{1}$ find range: 35 | 1 | Range may be calculated from original data or using candidate's answer in 4 a |


| Question |  | Expected Answer/s <br> Ans: $7 x+12 y$ <br> - ${ }^{1}$ multiply out bracket: $12 y-6 x$ <br> - ${ }^{2}$ collect like terms: $7 x+12 y$ | Max Mark <br> 2 | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 5 | a |  |  | 1. Correct answer without working award 2/2 <br> 2. $2^{\text {nd }}$ mark is not available if there is invalid subsequent working e.g. $7 x+12 y \rightarrow 19 x y \quad$ award $1 / 2 \vee x$ |
| 5 | b | Ans: 7(2-9g) <br> - ${ }^{1}$ identify common factor: 7 or $2-9 g$ <br> - ${ }^{2}$ factorise: $7(2-9 g)$ | 2 | Some common answers <br> $14(1-4 \cdot 5 g), 2(7-31 \cdot 5 g) \quad$ award $1 / 2 \times \checkmark$ |
| 6 |  | Ans: 297 <br> - ${ }^{1}$ know to multiply $\mathrm{l} \times \mathrm{b} \times \mathrm{h}$ : evidence of $\mathrm{l} \times \mathrm{b} \times \mathrm{h}$ involving 60, 45 and $1 \cdot 1$ <br> - ${ }^{2}$ find volume in $\mathrm{cm}^{3}$ : $60 \times 45 \times 110=297000$ <br> - ${ }^{3}$ find volume in litres: $297000 \div 1000=297$ | 3 | 1. Correct answer without working award $3 / 3$ <br> 2. Some common answers [working must be shown] <br> (a) $2.97[(60 \times 45 \times 1 \cdot 1) \div 1000]$ award $2 / 3 \checkmark \times \checkmark$ <br> (b) $29 \cdot 7$ $[(60 \times 45 \times 11) \div 1000$ ] award $2 / 3 \checkmark \times \checkmark$ <br> (c) 2970 [(60×45×1100) ) $\div 1000$ ] award $2 / 3 \checkmark \times \checkmark$ <br> (d) 2970 [(60×45×1•1)] award $1 / 3 \checkmark x x$ <br> (e) 2 litres 970 ml award $1 / 3 \checkmark x x$ <br> 3. Special cases: $V=l+b+h$ [working must be shown] <br> (a) $0 \cdot 215[(60+45+110) \div 1000]$ award $2 / 3 \times \checkmark \checkmark$ <br> (b) $0 \cdot 1061[(60+45+1 \cdot 1) \div 1000]$ award $1 / 3 \times x \checkmark$ |


|  | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 7 | Ans: 0135 or 1.35am <br> - ${ }^{1}$ know how to find driving time: $351 \div 52$ <br> ${ }^{2} \quad$ find driving time: 6h45m <br> - ${ }^{3}$ find journey time: $6 \mathrm{~h} 45 \mathrm{~m}+2 \times 40=8 \mathrm{~h} 5 \mathrm{~m}$ <br> - ${ }^{4}$ find arrival time: $1730+8 \mathrm{~h} 5 \mathrm{~m}=0135$ | 4 | 1. Correct answer without working award $4 / 4$. <br> 2. Minimum requirement for $4^{\text {th }}$ mark: correctly add a time involving hours and minutes to 1730 <br> 3. Some common answers (no working necessary) <br> 2535,1335 or 1.35 pm <br> 4. Some common answers (working must be shown) <br> (a) $0015=1730+6 \mathrm{~h} 45 \mathrm{~m}$ <br> award 3/4 $\checkmark \checkmark \times \checkmark$ <br> (b) $2255=1730+6 \mathrm{~h} 45 \mathrm{~m}-80 \mathrm{~m}$ <br> award 3/4 $\checkmark \checkmark \times \checkmark$ <br> (c) $0205=1730+6 \mathrm{~h} 75 \mathrm{~m}+80 \mathrm{~m}$ <br> award 3/4 $\checkmark \times \checkmark \checkmark$ <br> (d) $(0) 6 \cdot 45(\mathrm{am} / \mathrm{pm})$ <br> award $2 / 4 \checkmark \checkmark \times x$ <br> (e) $7 \cdot 25=6 \cdot 45+40$ <br> award 2/4 $\checkmark \checkmark \times x$ <br> (f) $6 \cdot 75=351 \div 52$ award $1 / 4 \checkmark \times x \times$ <br> (g) 1850 or $6.50 \mathrm{pm}=1730+2 \times 40$ <br> award $1 / 4 \times \times \times \checkmark$ <br> (h) $1730+2 \times 40=6 \cdot 50(\mathrm{am}) \quad$ award $0 / 4$ |


|  | stion | Expected Answer/s | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 8 |  | Ans: $\mathbf{£ 4 \cdot 1 4}$ <br> - ${ }^{1}$ know to divide 85 by $1 \cdot 57$ : $85 \div 1 \cdot 57(=54 \cdot 1401 \ldots)$ <br> - ${ }^{2}$ find cost in pounds and pence: $54 \cdot 14$ <br> - 3 find saving in pounds and pence: $54 \cdot 14-50=4 \cdot 14$ | 3 | 1. Correct answer without working <br> award $3 / 3$ <br> 2. Alternate strategy <br> - ${ }^{1}$ calculate saving in dollars: $85-50 \times 1.57=6.5(0)$ <br> - ${ }^{2}$ know to divide saving by 1.57 : $6 \cdot 5(0) \div 1 \cdot 57$ <br> ${ }^{3}$ find saving in pounds and pence: $4 \cdot 14$ <br> 3. The 2nd mark is only available where the answer to the division has to be rounded or truncated to the nearest penny. (alternate strategy : $3^{\text {rd }}$ mark) <br> 4. Some common answers (working must be shown) <br> (a) 31.85 or $31.84=50 \div 1 \cdot 57$ award $1 / 3 \times \checkmark \times$ <br> (b) $53 \cdot 15$ or $53 \cdot 16=85-50 \div 1 \cdot 57$ award $2 / 3 \times \checkmark \checkmark$ <br> (c) $33 \cdot 85$ or $33.86=[85-$ $(50 \div 1 \cdot 57)] \div 1 \cdot 57$ award 2/3 $\times \checkmark \checkmark$ <br> (d) $18 \cdot 15$ or $18 \cdot 16=50-50 \div 1 \cdot 57$ award $1 / 3 \times \checkmark \times$ <br> (e) $-83 \cdot 45=50-85 \times 1 \cdot 57$ award $1 / 3 \times \times \checkmark$ <br> (f) $133.45=85 \times 1.57$ award $0 / 3$ <br> (g) $83 \cdot 45=85 \times 1 \cdot 57-50$ award $0 / 3$ <br> (h) $-48 \cdot 45=85-85 \times 1.57$ award $0 / 3$ |


|  | stio | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 9 | a | Ans: 1786 <br> - ${ }^{1}$ calculate or measure angle at centre of 'good' sector: 188 <br> -2 know how to find number of customers who said the service was 'good': <br> $188 / 360 \times 3420$ <br> -3 find number of customers who said the service was 'good': 1786 | 3 | 1. Correct answer without working award 3/3 <br> 2. 1634 [ $172 / 360 \times 3420$ ] award $2 / 3 \times \checkmark \checkmark$ (no working necessary) <br> 3. A common answer (working must be shown) $188 \%$ of $3420=6429 \cdot 6$ <br> award $1 / 3 \checkmark \times x$ <br> 4. Do not award third mark where premature rounding results in wrong answer eg $\begin{array}{r} 188 / 360 \times 3420=0.52 \times 3420=1778 \cdot 4 \\ \text { award } 2 / 3 \checkmark \checkmark x \end{array}$ |
| 9 | b | Ans: In 2013 less said good more said poor more said fair <br> - ${ }^{1}$ make one valid comment: any one of the above comments <br> -2 make another valid comment: another one of the above comments | 2 | Answer must imply a comparison of results from both years. <br> 1. Disregard invalid statements. <br> eg less said good now $\checkmark$ <br> less said fair now $x$ <br> more said poor now $\checkmark$ award $2 / 2$ <br> 2. Disregard incorrect numerical references. <br> eg $43^{\circ}$ more said fair $15^{\circ}$ more said poor <br> award 2/2 <br> 3. Some common answers <br> (a) some customers switched from good to poor award $2 / 2$ <br> (b) In 2012 many more customers said good than poor, but in 2013 the numbers were closer to each other. award $1 / 2 \checkmark x$ <br> (c) They haven't been as good as last year. <br> award $1 / 2 \checkmark x$ |







## TOTAL MARKS FOR PAPER 2

## 2014 Mathematics

# Intermediate 1 Units 1, 2 \& 3 <br> Paper 1 (Non-calculator) 

## Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& 3 Paper 1 (Non-calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols $\checkmark$ and $\times$ are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$ ', indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

## Part Two: Mathematics Intermediate 1 Units 1, 2 and 3 Paper 1 (Non-calculator)

|  | sti | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | a | Ans: 4.63 <br> - $\quad$ calculate $4 \cdot 8-0 \cdot 17: 4.63$ | 1 |  |
| 1 | b | Ans: 1-204 <br> calculate $9.632 \div 8: \quad 1-204$ | 1 |  |
| 1 | c | Ans: 3 <br> - calculate 5\% of 60: 3 | 1 | Working subsequent to correct answer $\quad$ award 0/1 |
| 2 |  | Ans: $\mathbf{£ 6 5 . 9 4}$ <br> - ${ }^{1} \quad$ correct method: $7 \times 9.42$ <br> - ${ }^{2}$ multiply correctly: $65 \cdot 94$ | 2 | Working subsequent to correct answer, a maximum of 1 mark is available |
| 3 |  | Ans: s=14 <br> - ${ }^{1}$ start to collect like terms: 6 s or 84 <br> - ${ }^{2}$ collect like terms and equate: $6 s=84$ <br> - ${ }^{3}$ solve equation for s : $\mathrm{s}=14$ | 3 | 1. For answers without valid working award $1 / 3$ <br> e.g. (i) s = 14 without working <br> (ii) $8 \times 14-3=2 \times 14+81 \rightarrow s=14$ <br> 2. For the award of the third mark an answer of the form $s=$ is required <br> 3. Answers acceptable for partial credit (valid working must be shown) <br> $\left.\begin{array}{rl}\text { (i) } 6 s=84 & \rightarrow \\ \text { (ii) } & 14 \\ \text { (s }=78 & \rightarrow \\ s=13 \\ \text { (iii) } 10 s=84 & \rightarrow \\ s=8 \cdot 4\end{array}\right\}$ award $2 / 3 \checkmark \times \checkmark$ <br> (iv) $10 \mathrm{~s}=78 \rightarrow \mathrm{~s}=7.8 \quad$ award $1 / 3 \times \times \checkmark$ |
| 4 | a | Ans: 21 <br> - ${ }^{1}$ calculate $8-(-13): 21$ | 1 |  |
| 4 | b | Ans: 6 <br> - ${ }^{1}$ calculate $-54 \div(-9): 6$ | 1 |  |

Page 4

| Question |  | Expected Answer/s |  |  |  | Max Mark <br> 3 | Additional Guidance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | Ans: |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \hline \text { Sandwich } \\ 90 p \end{gathered}$ |  | Juice 80p | $\begin{gathered} \text { Fruit } \\ 50 \mathrm{p} \end{gathered}$ |  | $\begin{aligned} & \text { Yoghurt } \\ & \text { 45p } \end{aligned}$ | Biscuit <br> $35 p$ | $\begin{gathered} \text { Total Cost } \\ \hline \end{gathered}$ |
|  |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  | $2 \cdot 15$ |
|  |  | $\checkmark$ |  | $\checkmark$ |  |  |  | $\checkmark$ | 2.05 |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ |  | 1.85 |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ | 1.75 |
|  |  |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  | 1.75 |
|  |  | - ${ }^{1}$ one correct row: <br> - ${ }^{2}$ two more correct rows: <br> - ${ }^{3}$ final two correct rows: |  |  |  |  | 1. Where there are missing or incorrect totals a maximum of 2 marks is available <br> (a) 5 rows otherwise "correct" award $2 / 3 \times \checkmark \checkmark$ <br> (b) 2 rows otherwise "correct" award $1 / 3 \times \vee \times$ |  |  |
| 6 | a | Ans: |  |  |  | 2 |  |  |  |
|  |  | x | -1 | 0 |  |  |  |  |  |
|  |  | $\mathrm{y}$ | -9 | -5 |  |  |  |  |  |
|  |  | - ${ }^{1}$ calculate y when $\mathrm{x}=-1$ : -9 <br> - ${ }^{2}$ calculate y when $x=0$ and 3 : -5 and 7 |  |  |  |  |  |  |  |
| 6 | b | Ans: straight line graph of $y=4 x-5$ <br> - ${ }^{1}$ correctly plot all three points from the table <br> - ${ }^{2}$ draw straight line through the three points shown in the table |  |  |  | 2 | 1. If the line $y=4 x-5$ is drawn (even if this is not consistent with the points in the table) award $2 / 2$ [minimum acceptable length: line joining $(-1,-9)$ to $(2,3)]$ <br> 2. Where the three points plotted are consistent with the table and are not collinear, the $2^{\text {nd }}$ mark is unavailable [check gradients] <br> 3. Where $(y, x)$ is consistently plotted, answer should be followed through with the possibility of awarding the $2^{\text {nd }}$ mark |  |  |


|  | sti | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 7 | a | Ans: £32 <br> - ${ }^{1}$ correct method: $5+3 \times(360 \div 40)$ <br> - ${ }^{2}$ calculate pay: 32 | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. Accept $5+3(=8) \times(360 \div 40)(=72)$ as evidence of method for $1^{\text {st }}$ mark <br> 3. $£ 27$ (final answer) award 0/2 |
| 7 | b | Ans: 600 <br> - ${ }^{1}$ correct method: (50-5) $\div 3 \times 40$ <br> -2 calculate number of leaflets: 600 | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. Alternative strategy <br> -1.2 e.g. 32360 <br> 35400 <br> 38440 <br> 41480 <br> $44 \quad 520$ <br> 47560 <br> $50 \quad 600$ <br> [award $1 / 2$ for correct alternate strategy with one error.] <br> 3. 15 (final answer) <br> award 0/2 |


|  | sti | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 8 | a | Ans: $\begin{aligned} & 198 \\ & \underline{236} \\ & \underline{720}\end{aligned}$ <br> - ${ }^{1}$ complete table: 198 <br> $\underline{236}$ | 1 |  |
| 8 | b | Ans: $\mathbf{2 . 4}$ <br> - ${ }^{1}$ know to divide $\Sigma \mathrm{fx}$ by 300 : $720 \div 300$ <br> - ${ }^{2} \quad$ correctly divide $\Sigma \mathrm{fx}$ by 300 : $720 \div 300=2 \cdot 4$ | 2 | 1. Correct answer without working subsequent to part (a) award $2 / 2$ <br> 2. $1^{\text {st }}$ mark may only be awarded for attempting $\sum \mathrm{fx} \div 300$ <br> 3. Award $0 / 2$ for e.g. $144=720 \div 5,75=300 \div 4$ <br> 4. Accept $\Sigma \mathrm{fx} \div 100 \times 3$ as evidence of knowing to divide $\Sigma \mathrm{fx}$ by 300 |
| 9 |  | Ans: 314 <br> - ${ }^{1}$ know to multiply $3 \cdot 14 \times 5^{2} \times 4$ : <br> - ${ }^{2} \quad$ find $5^{2}: 25$ <br> - ${ }^{3}$ multiply correctly: $3 \cdot 14 \times 25 \times 4=314$ | 3 | 1. Correct answer without working award $3 / 3$ <br> 2. $125 \cdot 6=3 \cdot 14 \times 5 \times 2 \times 4$ award $2 / 3 \checkmark \times \checkmark$ <br> 4. $62 \cdot 8=3 \cdot 14 \times 5 \times 4$ award $1 / 3 \times \times \checkmark$ |



## TOTAL MARKS FOR PAPER 1

[END OF MARKING INSTRUCTIONS]

## 2014 Mathematics

# Intermediate 1 Units 1, 2 \& Applications Paper 1 (Non-Calculator) 

## Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& Applications Paper 1 (Non-Calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet’ point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols $\checkmark$ and $\times$ are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

| Question |  | Expected Answer/s | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | a | Ans: 4.63 <br> -1 calculate 4•8-0.17: $4 \cdot 63$ | 1 |  |
| 1 | b | Ans: 1-204 <br> - ${ }^{1} \quad$ calculate $9 \cdot 632 \div 8: ~ 1 \cdot 204$ | 1 |  |
| 1 | c | Ans: 3 <br> -1 calculate 5\% of 60: 3 | 1 | Working subsequent to correct answer award 0/1 |
| 2 |  | Ans: $£ 65.94$ <br> - ${ }^{1} \quad$ correct method: $7 \times 9.42$ <br> - ${ }^{2}$ multiply correctly: $65 \cdot 94$ | 2 | Working subsequent to correct answer, a maximum of 1 mark is available |
| 3 | a | Ans: 30 minutes <br> - ${ }^{1}$ interpret network diagram: 30 | 1 |  |
| 3 | b | Ans: 65 minutes <br> $\boldsymbol{\bullet}^{1}$ interpret network diagram: 65 | 1 |  |
| 4 | a | Ans: 21 <br> - ${ }^{1}$ calculate $8-(-13): 21$ | 1 |  |
| 4 | b | Ans: 6 <br> -1 calculate $-54 \div(-9): 6$ | 1 |  |


|  | sti | Expected Answer/s |  |  | Max Mark | Additional Guidance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | Ans: |  |  | 3 |  |  |  |
|  |  | $\begin{gathered} \hline \text { Sandwich } \\ 90 \mathrm{p} \end{gathered}$ | Juice 80p | $\begin{gathered} \text { Fruit } \\ 50 \mathrm{p} \end{gathered}$ |  | Toghurt | $\begin{gathered} \hline \text { Biscuit } \\ 35 \mathrm{p} \end{gathered}$ | Total Cost £ |
|  |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  | $2 \cdot 15$ |
|  |  | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ | 2.05 |
|  |  | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ |  | 1.85 |
|  |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ | 1.75 |
|  |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  | 1.75 |
|  |  | - ${ }^{1}$ one correct row: <br> - ${ }^{2}$ two more correct rows: <br> - ${ }^{3}$ final two correct rows: |  |  |  | 1. Where there are missing or incorrect totals a maximum of 2 marks is available <br> (a) 5 rows otherwise "correct" award $2 / 3 \times \checkmark \checkmark$ <br> (b) 2 rows otherwise "correct" award $1 / 3 \times \checkmark \times$ |  |  |
| 6 | a | Ans: 1.83 <br> - ${ }^{1}$ arrange numbers in order: $\begin{array}{lllll} 1.78 & 1.81 & 1.85 & 1.88 & 1.89 \end{array}$ $\begin{array}{llll} 1.91 & 1.93 & 2.01 & 2.03 \end{array}$ <br> - ${ }^{2}$ find lower quartile: 1.83 |  |  | 2 | 1. Correct answer without working award 2/2 <br> 2. If 'correct' lower quartile is found from ordered list with one missing or one extra number award $1 / 2 \times \checkmark$ <br> 3. If numbers not ordered then for lower quartile $=1.88 \quad$ award $1 / 2 \times \checkmark$ <br> 4. Accept ordered list written in part (b) |  |  |
| 6 | b | Ans: 0.14 <br> - ${ }^{1}$ find upper quartile: 1.97 <br> -2 find interquartile range: $1.97-1.83=0.14$ |  |  | 2 | 1. <br> 2. <br> 3. <br> 4. | Correct answer <br> If numbers not o for $1 \cdot 92-1 \cdot 88=$ <br> Accept upper qua in part (a) for the <br> Range calculated | orking <br> award 2/2 <br> en award $2 / 2$ <br> arly identified the $2^{\text {nd }}$ mark <br> award 0/2 |


| Question |  | Expected Answer/s | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 7 | a | Ans: £32 <br> - ${ }^{1}$ correct method: $5+3 \times(360 \div 40)$ <br> - ${ }^{2}$ calculate pay: 32 | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. Accept $5+3(=8) \times(360 \div 40)(=72)$ as evidence of method for $1^{\text {st }}$ mark <br> 3. $£ 27$ (final answer) award 0/2 |
| 7 | b | Ans: 600 <br> - ${ }^{1}$ correct method: $(50-5) \div 3 \times 40$ <br> - ${ }^{2}$ calculate number of leaflets: 600 | 2 | 1. Correct answer without working award 2/2 <br> 2. Alternative strategy <br> -102 ${ }^{2}$ eg 32360 <br> 35400 <br> 38440 <br> 41480 <br> $44 \quad 520$ <br> 47560 <br> $50 \quad 600$ <br> [award $1 / 2$ for correct alternate strategy with one error.] <br> 3. 15 (final answer) <br> award 0/2 |


|  | sti | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 8 | a | Ans:198 <br>  <br>  <br> $\underline{236}$ <br> - ${ }^{1}$ complete table: 198 <br> $\frac{236}{720}$ | 1 |  |
| 8 | b | Ans: $\mathbf{2 . 4}$ <br> - ${ }^{1} \quad$ know to divide $\Sigma \mathrm{fx}$ by 300 : $720 \div 300$ <br> - ${ }^{2} \quad$ correctly divide $\Sigma \mathrm{fx}$ by 300 : $720 \div 300=2 \cdot 4$ | 2 | 1. Correct answer without working subsequent to part (a) award 2/2 <br> 2. $1^{\text {st }}$ mark may only be awarded for attempting $\sum \mathrm{f} x \div 300$ <br> 3. Award $0 / 2$ for eg $144=720 \div 5,75=300 \div 4$ <br> 4. Accept $\Sigma \mathrm{fx} \div 100 \times 3$ as evidence of knowing to divide $\Sigma \mathrm{fx}$ by 300 |



| Question |  | Expected Answer/s | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 10 |  | Ans: $4 / 100,3 / 100$ so raffle A <br> - ${ }^{1}$ find probability: ${ }^{24} / 600$ or ${ }^{30} / 1000$ <br> - ${ }^{2}$ find other probability and attempt to compare it with first probability: ${ }^{24 / 600}$ and ${ }^{30} / 1000$ and evidence of attempting to compare probabilities <br> -3 compare fractions and state conclusion: ${ }^{4} / 100>3 / 100$ so raffle <br> A | 3 | 1. Accept simplification of both fractions (or ratios) as evidence of attempting to compare for $2^{\text {nd }}$ mark <br> 2. Alternate strategy: acceptable evidence for first 2 marks eg (ticket: winners) <br> $600: 24$ and 1000: 30 <br> $300: 12 \quad 100: 3$ <br> 100 : 4 <br> or <br> $600: 24$ and 1000: 30 <br> 150: 6 <br> (750): 30 |

## TOTAL MARKS FOR PAPER 1

## 2014 Mathematics

# Intermediate 1 Units 1, 2 \& Applications Paper 2 

## Finalised Marking Instructions

## © Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet’ point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working’.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols $\checkmark$ and $\times$ are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

|  | stion | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | Ans: 875 ml <br> - ${ }^{1}$ find number of ml per orange: $500 \div 8=62 \cdot 5$ <br> - ${ }^{2}$ find amount of juice: $62.5 \times 14=875$ | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. Alternate strategies <br> (a) ${ }^{1} \quad 14 \div 8=1.75$ <br> - ${ }^{2} \quad 1.75 \times 500=875$ <br> (b) ${ }^{1} \quad 14 \div(8 \div 500)$ <br> - $^{2} \quad 14 \div 0.016=875$ <br> [ $8 \div 500$ is not enough for the $1^{\text {st }}$ mark] |
| 2 | a | Ans: $£ 248.95$ <br> - ${ }^{1}$ find monthly payment: $248 \cdot 95$ | 1 |  |
| 2 | b | Ans: £29 874 <br> - ${ }^{1}$ start to find total payment: $248.95 \times 10 \times 12$ <br> or $2489 \cdot 5(0)$ [ $248.95 \times 10$ ] <br> or $2987 \cdot 4(0)$ [ $248 \cdot 95 \times 12]$ <br> -2 find total payment: 29874 | 2 | 1. Correct answer without working award $2 / 2$ <br> 2. If part (a) is incorrect allow follow through in part (b) |
| 3 |  | Ans: $\quad 167.8 \mathrm{~cm}^{2}$ <br> - ${ }^{1}$ know how to find area of a triangular face: $1 / 2 \times 11 \cdot 6 \times 3(=17 \cdot 4)$ <br> - ${ }^{2}$ know how to find total area of rectangular faces: $11 \cdot 6 \times 5+3 \times 5+12 \times 5(=133)$ <br> - ${ }^{3}$ calculate total surface area: $167 \cdot 8$ | 3 | 1. Correct answer without working award $3 / 3$ <br> 2. The final mark can only be awarded for the addition of 5 correct calculations, but see 3(a) below. <br> 3. (a) Where there is clear evidence that triangles are combined to form a rectangle, then award $3 / 3$ for $(11 \cdot 6 \times 3)+(11 \cdot 6 \times 5+3 \times 5+12 \times 5)=$ $167 \cdot 8$ <br> (b) for $11 \cdot 6 \times 3=34 \cdot 8$ alone award $0 / 3$ <br> 4. For calculation of volume (87) <br> award 0/3 |


|  | stio | Expected Answer/s | $\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 4 | a | Ans: <br> - ${ }^{1}$ stem correct: <br> - ${ }^{2}$ all leaves on correct level: <br> -3 leaves ordered correctly | 3 | 1. Accept <br> (a) use of commas as bad form <br> (b) stem in descending order <br> (c) no line drawn between stem and leaves <br> (d) extra numbers in the stem <br> 2. Final mark is not available where there are more than two errors in the unordered diagram |
| 4 | b | Ans: $\mathbf{3 8} \mathbf{~ m p g}$ <br> - ${ }^{1}$ find median: 38 | 1 | Ensure 4 b is consistent with 4 a |
| 4 | c | Ans: $\mathbf{3 5} \mathbf{m p g}$ <br> ${ }^{1} \quad$ find range: 35 | 1 | Range may be calculated from original data or using candidate's answer in 4 a |


|  | stio | Expected Answer/s | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 5 | a | Ans: 674 <br> - ${ }^{1}$ evaluate formula: 674 | 1 |  |
| 5 | b | Ans: =AVERAGE(E3..E6) <br> $\bullet^{1}$ state formula: AVERAGE(E3..E6) or equivalent | 1 | 1. Accept any punctuation mark or space between E3 and E6 <br> 2. Accept abbreviations for AVERAGE eg $\operatorname{AV}$ (E3..E6) <br> 3. Accept (E3 +E4+E5+E6)/4 or SUM(E3..E6)/4 [must be / not $\div$ ] <br> 4. Common answer average:(E3..E6) award 0/1 |
| 6 |  | Ans: 297 <br> - ${ }^{1}$ know to multiply $l \times b \times h$ : evidence of $1 \times b \times h$ involving 60 , 45 and $1 \cdot 1$ <br> -2 find volume in $\mathrm{cm}^{3}$ : $60 \times 45 \times 110=297000$ <br> - ${ }^{3}$ find volume in litres: $297000 \div 1000=297$ | 3 | 1. Correct answer without working <br> 2. Some common answers answers [working must be shown] <br> (a) 2.97 $[(60 \times 45 \times 1 \cdot 1) \div 1000]$ $\text { award } 2 / 3 \checkmark \times \checkmark$ <br> (b) $29 \cdot 7$ $[(60 \times 45 \times 11) \div 1000]$ $\text { award } 2 / 3 \checkmark \times \checkmark$ <br> (c) 2970 $[(60 \times 45 \times 1100$ $\begin{aligned} & 0) \div 1000] \\ & \text { award } 2 / 3 \checkmark \times \checkmark \end{aligned}$ <br> (d) 2970 [( $60 \times 45 \times 1.1)]$ <br> award $1 / 3 \checkmark x x$ <br> (e) 2 litres 970 ml $\text { award } 1 / 3 \checkmark \times x$ <br> 3. Special cases: $V=l+b+h$ [working must be shown] <br> (a) $0 \cdot 215[(60+45+110) \div 1000]$ award $2 / 3 \times \checkmark \checkmark$ <br> (b) $0 \cdot 1061[(60+45+1 \cdot 1) \div 1000]$ award $1 / 3 \times \times \checkmark$ |




|  | stio | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 9 | a | Ans: 1786 <br> - ${ }^{1}$ calculate or measure angle at centre of 'good’ sector: 188 <br> -2 know how to find number of customers who said the service was 'good': <br> $188 / 360 \times 3420$ <br> - ${ }^{3}$ find number of customers who said the service was 'good': 1786 | 3 | 1. Correct answer without working award $3 / 3$ <br> 2. $1634[172 / 360 \times 3420] \quad$ award $2 / 3 \times \checkmark \checkmark$ (no working necessary) <br> 3. A common answer (working must be shown) $188 \%$ of $3420=6429 \cdot 6$ award $1 / 3 \checkmark x x$ <br> 4. Do not award third mark where premature rounding results in wrong answer eg $188 / 360 \times 3420=0.52 \times 3420=1778 \cdot 4$ <br> award $2 / 3 \checkmark \checkmark x$ |
| 9 | b | Ans: In 2013 less said good more said poor more said fair <br> - ${ }^{1}$ make one valid comment: any one of the above comments <br> - ${ }^{2}$ make another valid comment: another one of the above comments | 2 | Answer must imply a comparison of results from both years. <br> 1. Disregard invalid statements. <br> eg less said good now $\checkmark$ <br> less said fair now $x$ <br> more said poor now $\checkmark$ award $2 / 2$ <br> 2. Disregard incorrect numerical references. <br> eg $43^{\circ}$ more said fair <br> $15^{\circ}$ more said poor <br> award 2/2 <br> 3. Some common answers <br> (a) some customers switched from good to poor award 2/2 <br> (b) In 2012 many more customers said good than poor, but in 2013 the numbers were closer to each other. <br> award $1 / 2 \checkmark x$ <br> (c) They haven't been as good as last year. |




| Question |  | Expected Answer/s | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 12 |  | Ans: 7 hours <br> - ${ }^{1}$ know how to find basic wage: $24 \times 7 \cdot 50 \quad(=180)$ <br> -2 know how to find overtime pay: 285 - basic wage (= 105) <br> -3 know how to find number of overtime hours: overtime pay $\div(7 \cdot 50 \times 2)$ <br> - ${ }^{4}$ all calculations correct: 7 | 4 | 1. Correct answer without working <br> award 4/4 <br> 2. Alternate strategy <br> ${ }^{-1}$ strategy: $285 \div 7.50 \quad(=38)$ <br> ${ }^{\bullet} 2$ strategy: above answer - 24 (= 14) <br> ${ }^{\bullet} 3$ strategy: above answer $\div 2$ <br> ${ }^{4}$ all calculations correct: 7 <br> 3. For $4^{\text {th }}$ mark calculations must include a subtraction and division / multiplication. These may be implied. <br> 4. Common answers |




TOTAL MARKS FOR PAPER 2

## TOTAL MARKS FOR <br> PAPER 1 \& 2

80
[END OF MARKING INSTRUCTIONS]

