2006 Mathematics

Intermediate 1 Units 1, 2 + 3 Paper 1

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 1 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1 Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.

3 The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin \mathrm{x}^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values / algebraic expressions.

4 Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).

5 Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.

6 In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.

7 Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

8 Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.

9 Do not penalise the same error twice in the same question.
10 Do not penalise a transcription error unless the question has been simplified as a result.
11 Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1 Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how $s / h e$ has awarded marks, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through, if otherwise correct and can be awarded marks, it should be marked with a crossed tick,
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Mathematics Intermediate 1: Paper 1, Units 1, 2 and 3

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each -
6	Ans: $\quad n=6$ - ${ }^{1}$ process: start to collect like terms - ${ }^{2}$ process: collect like terms and equate - ${ }^{3}$ process: solve equation for n	- ${ }^{1} \quad 7 n$ or 42 - $2 \quad 7 n=42$ -3 $n=6$ 3 marks
NOTES: 1 2 3 4	For answers without valid working eg (i) $n=6$ without working (ii) $5 \times 6+9=51-2 \times 6 \rightarrow n=6$ Only one of the first two marks can be awarded if For the award of the 3rd mark an answer of the fo Answers acceptable for partial credit (valid work (i) $7 n=42 \rightarrow 6$ (ii) $7 n=60 \rightarrow n=8 \cdot 5 \ldots .$. (Disregard incorrect rounding) (iii) $3 n=42 \rightarrow n=14$ (iv) $3 n=60 \rightarrow n=20$	award $0 / 3$ and 42 are not equated $n=\text { is required }$ must be shown) award $2 / 3$ award $1 / 3$

$\begin{gathered} \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
8	Ans: $£ 1.05$ - ${ }^{1}$ strategy: correct method - ${ }^{2}$ process: start calculation - ${ }^{3}$ process: complete calculation	- $\frac{3}{5}$ of $70 \times 2 \frac{1}{2}$ - ${ }^{2} \frac{3}{5}$ of $70=42$ or $70 \times 2 \frac{1}{2}=175$ or $\frac{3}{5} \text { of } 2 \frac{1}{2}=1 \cdot 5$
NOTES:		
1 2 3	105 with no working Final answer (working must be shown) (a) $1 \cdot 05$ (no units necessary) (b) $£ 105$ $150 \times 70=10500 \times \frac{3}{5}=6300$	award $0 / 3$ award $3 / 3$ award $2 / 3$ award $1 / 3$

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
9	Ans: 6 - ${ }^{1}$ interpret: know how to evaluate formula - ${ }^{2}$ process: start to evaluate -3 process: complete evaluation	- ${ }^{1} \sqrt{144 \div 4}$ or $\sqrt{144} \div \sqrt{4}$ - $2 \quad \frac{144}{4}=36$ or $\sqrt{144}=12$ -3 6 3 marks
NOTES: 1 2	Final answer (no working necessary) (a) $\sqrt{36}$ (b) 36 (c) $\sqrt{\frac{144}{4}}$ Award $3^{\text {rd }}$ mark for a good approximation to \sqrt{n} eg $\sqrt{35}=5 \cdot \ldots$.	award $2 / 3$ award $1 / 3$ award $0 / 3$ ere n is not a perfect square

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
10 (a)	Ans: - ${ }^{1}$ interpret/process: complete number cell	-2 -8
(b)	Ans: - ${ }^{1}$ strategy/process: final three numbers consistent \bullet^{2} strategy/process: first three numbers consistent	\bullet^{1} 5 \square 2 marks
(c)	Ans: - ${ }^{1}$ strategy/process: experiment - ${ }^{2}$ strategy/process: complete number cell	$\bullet \bullet^{2}$ -4 -3 (award 1 for two attempts where first three or final three numbers are consistent)
NOTE:	correct answer need not appear in the intended	er cell for it to be acceptable.

TOTAL MARKS FOR PAPER 1

[END OF MARKING INSTRUCTIONS]

2006 Mathematics

Intermediate 1 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 1 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. Do not penalise a transcription error unless the question has been simplified as a result.
11. Do not penalise the inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.
2. Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the place in the margin.
3. Where a marker wishes to indicate how s / he has awarded full marks, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through, if otherwise correct and can be awarded marks, it should be marked with a crossed tick, \downarrow.
(c) Each error should be underlined at the point in the working where it first occurs.
4. Do not write any comments, words or acronyms on the scripts.

Mathematics Intermediate 1: Paper 2, Units 1, 2 and 3

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1	Ans: $\mathbf{1 2 4 3 0}$ pesos - ${ }^{1}$ strategy/process: correctly multiply 650 by $19 \cdot 13$ - ${ }^{2}$ process: round to nearest ten	- $12434 \cdot 5$ - ${ }^{2} \quad 12430$ 2 marks
NOTES: 1 2	Answers acceptable for partial credit (no working (a) $12434,12435,12400$ (b) $30(650 \div 19 \cdot 13$ to nearest 10$)$ For 12440 with no evidence of $12434(\cdot 5)$ or 12435	award $1 / 2$ award $1 / 2$ award $0 / 2$
2	Ans: 5.4×10^{-6} - ${ }^{1}$ process: express in standard form - ${ }^{2}$ process: express in standard form	- ${ }^{1} \quad 5.4 \times 10^{n}$ - ${ }^{2} \quad 5.4 \times 10^{-6}$ 2 marks
NOTE:	$10^{-7}, 0.54 \times 10^{-5}, 5 \times 10^{-6}$	award 1/2
3	Ans: $t>9$ - ${ }^{1}$ process: collect constants - ${ }^{2}$ process: solve inequality for t	- ${ }^{1} 4 t>36$ - $\quad t>9$ 2 marks
NOTES: 1 2	For answers without valid working eg (i) $t>9$ without working (ii) $4 \times 9-7>29 \rightarrow t>9$ Answers acceptable for partial credit (valid workin (i) $4 t>36 \rightarrow>9$ (ii) $4 t>36 \rightarrow t=9$ or $4 t=36 \rightarrow t=9$ (iii) $4 t>22 \rightarrow t>5.5$ or $t>\frac{22}{4}$	award $0 / 2$ must be shown) award $1 / 2$

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
4	Ans: 455 - ${ }^{1}$ strategy: correct method - ${ }^{2}$ process: carry out calculations correctly	- ${ }^{1}{ }^{2} 455$ (award 1 for correct method or $260 \div 4=65$ or. $260 \times 7=1820$ or $7 \div 4=1.75$)
5 (a)	Ans: 15 - ${ }^{1}$ process: identify mode	$\bullet^{1} 15$ (mark
(b)	Ans: 3/40 - ${ }^{1}$ process: find probability	- $3 / 40$ 1 mark
NOTES: 1 Accept $3: 40,3$ out of 40,3 in 40, $3-40,0 \cdot 075,7 \cdot 5 \%$		
(c)	Ans: 16.3 - communicate: 3 correct entries in table - ${ }^{2}$ strategy: know to divide $\Sigma f x$ by 40 - ${ }^{3}$ process: all calculations correct (must include division of $\Sigma \mathrm{f} x$)	- ${ }^{1}$ any three of $90,57,40,652$ (or consistent total) - ${ }^{2} \quad 652 \div 40$ - ${ }^{3} \quad 16 \cdot 3$
NOTES:		
1 2	$\frac{\text { Answer }}{16 \cdot 3}$ requirement for 1 st mark met $652 \div 40=16$ $3 / 3$ 16 $3 / 3$ $93(\cdots \ldots).[652 \div 7]$ $2 / 3$ When candidate calculates mean in (a) then award 0 available for calculating the mean.	requirement for 1st mark not met 2/3 2/3 0/3 1/3 1 for (a) and all 3 marks for (c) are

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
6	Ans: 240 litres - ${ }^{1}$ strategy: know to multiply $1 \times \mathrm{b} \times \mathrm{h}$ - ${ }^{2}$ strategy/process: find volume in cm^{3} (or m ${ }^{3}$) - ${ }^{3}$ process: convert to litres	- ${ }^{1}$ evidence of $1 \times b \times h$ involving $50 \mathrm{~cm}, 1 \cdot 2 \mathrm{~m}$ and 40 cm - $2 \quad 240000\left(\mathrm{~cm}^{3}\right)$ (or $0.24\left(\mathrm{~m}^{3}\right)$) - 3240 3 marks
NOTES: 1	Answer acceptable for partial credit (no working (a) $2400(50 \times 1.2 \times 40)$ (b) $2 \cdot 4,2$ litres 400	cessary) award $1 / 3$ award $2 / 3$
7 (a)	Ans: $2 x-5 y$ - ${ }^{1}$ process: multiply out brackets - ${ }^{2}$ process: collect like terms	- $13 y+2 x-8 y$ or $2 x-8 y$ - ${ }^{2} 2 x-5 y$
NOTES:		
(b)	Ans: $4(2 d+3)$ - ${ }^{1}$ process: identify common factor - ${ }^{2}$ process: factorise	- ${ }^{1} \quad 4$ or $2 d+3$ - ${ }^{2} \quad 4(2 d+3)$ 2 marks
NOTES:	$2(4 d+6), 8(d+1 \cdot 5) \quad \text { award } 1 / 2$	

$\begin{gathered} \text { Question } \\ \text { No } \end{gathered}$ No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
9	Ans: 1.3m - ${ }^{1}$ strategy: correct form of Pythagoras Theorem - 2 process: calculate $1 \cdot 1^{2}+0.7^{2}$ ${ }^{3}$ process: calculate $\sqrt{1 \cdot 7}$	- ${ }^{1} \quad 1.1^{2}+0.7^{2}$ $\bullet^{2} \quad 1.7$ - ${ }^{3}$ 1.3...
NOTES: 1 2	Answer with working 1.3 $3 / 3$ $0.8(48 \ldots)$ $\left[1.1^{2}-0.7^{2}\right]$ $2 / 3$ 0.77 $\left[1.1^{2} \times 0.7^{2}\right]$ $2 / 3$ If candidate uses trigonometry then award mark - $\operatorname{eg} P=\tan ^{-1}\left(\frac{1 \cdot 1}{0 \cdot 7}\right) \rightarrow \sin P=\frac{1 \cdot 1}{\mathrm{WP}}$ - $2 \mathrm{WP}=\frac{1 \cdot 1}{\sin \mathrm{P}}$ - ${ }^{3} \quad 1 \cdot 3$	without working 3/3 0/3 0/3 follows

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
10	Ans: - ${ }^{1}$ strategy: use suitable scale - ${ }^{2}$ communicate: scales labelled correctly - 3 process: three points correctly plotted - ${ }^{4}$ process: line graph drawn	- ${ }^{1}$ see note 1 for acceptable scales. - ${ }^{2}$ "speed" on one axis "distance" on other axis - three points correctly plotted - ${ }^{4}$ other two points correctly plotted and line graph drawn
NOTES: 1 2	Acceptable scales $\underline{\text { speed }}$ horizontal axis 1 box $=5,10 \mathrm{mph}$ vertical axis 1 box $=2,2 \cdot 5,5 \mathrm{mph}$ See next page for examples of some common ans	distance $\begin{aligned} & 1 \text { box }=15,20 \text { feet } \\ & 1 \text { box }=5,10,15 \text { feet } \end{aligned}$ wers

（a）

（d）

フレイメ3／4
（g）

\mathbf{X} 人X ${ }^{1 / 4}$

メママメ 2／4
（h）

ィレメ× 2／4
（b）

メーメレ $2 / 4$

Spaces between bars not nessesary in bar graphs

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
11	Ans: $\mathbf{£ 7 8}$ $\bullet \bullet^{2}$ strategy: know how to calculate interest - process: carry out percentage and fraction calculations correctly	$\bullet^{1} \bullet^{2} \frac{4 \cdot 5}{100} \times 2600 \times \frac{8}{12}$ (award 1 for $\frac{4 \cdot 5}{100} \times 2600$ or $\quad \frac{8}{12} \times 4.5$ or $\quad \frac{8}{12} \times 2600$) $\cdot{ }^{3} \quad 78$ 3 marks
NOTES:	Answer (no working necessary) $\begin{aligned} & 78 \\ & 2678(2600+78) \\ & 117(4 \cdot 5 \% \text { of } 2600) \\ & 936(117 \times 8) \end{aligned}$	award 3/3 award 3/3 award $1 / 3$ award $1 / 3$

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
12	Ans: 25m - ${ }^{1}$ strategy: know that hypotenuse is 20 - ${ }^{2}$ strategy: know how to use sine ratio -3 strategy: know how to solve equation - process: carry out trigonometric calculation -5 strategy: add 10 to previously calculated value	- $\quad \sin 50^{\circ}=\frac{x}{20}$ - ${ }^{3} x=20 \sin 50^{\circ}$ - ${ }^{4} \quad 15(\cdot 3 \ldots)$ - 5 (3 ...)
NOTES: 1 2 3 4	Correct answer without working $4 \cdot 8$ (radians), $24 \cdot 1$ (grad) [working must be shown] Where an incorrect trig ratio is used, working should of awarding $4 / 5$ Do not award the $4^{\text {th }}$ mark for eg $20 \sin 50^{\circ}=15 \cdot 3=\sqrt{15 \cdot 3}=3.9$	award 0/5 award 5/5 followed through with the possibility

