2004 Mathematics

Intermediate 1 - Units 1, 2 and 3

Finalised Marking Instructions

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

4 In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

5 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

6 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

7 A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

8 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

9 In general do not penalise the same error twice in the one question.

10 Accept legitimate variations in numerical/algebraic questions.

11 Do not penalise bad form eg $\sin x^{\circ}=0.5=30^{\circ}$.

12 A transcription error is not normally penalised except where the question has been simplified as a result.

13 Do not penalise inadvertent use of radians in trigonometry questions, provided its use is consistent within the question.

Mathematics - Intermediate 1: Paper 1, Units 1, 2 and 3 (non-calc)

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1. (a)	Ans: $£ 69$ - process: calculate 30% of 230	- ${ }^{1} 69$ 1 mark
NOTES:		
1. (b)	Ans: 60 - process: calculate $\frac{4}{7}$ of 105	${ }^{1} 60$
NOTES:		
1. (c)	Ans: 200 ${ }^{1}$ process: calculate $380-20 \times 9$	$\bullet^{1} 200$ 1 mark
NOTES:		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
2.	Ans: $£ 599$ - ${ }^{1}$ strategy: correct method -2 process: carry out calculations correctly	599 (award 1 for correct method or $12 \times 45=540)$ 2 marks
NOTES: 1.	Correct answer with or without working	award $2 / 2$
3.	Ans: 12m ${ }^{3}$ - 1 strategy: know how to find volume of cuboid - 2 process: multiply $4 \times 2 \cdot 5 \times 1 \cdot 2$ correctly	- ${ }^{1} \quad 4 \times 2 \cdot 5 \times 1 \cdot 2$ - ${ }^{2} 12$ 2 marks
NOTES:		
1. Correct answer with or without working		award $2 / 2$

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
4. (a)	Ans: - $\mathbf{1 . 5}$ -1 strategy: know to order numbers $\bullet{ }^{2}$ process: find median	
NOTES:		
4. (b)	Ans: 8 - 1 strategy: know how to find range - 2 process: find range	-1 $3-(-5)$ $\bullet^{2} 8$ 2 marks
NOTES: $\begin{array}{\|ll} \text { 1. } & \text { Corr } \\ \text { 2. } & -8(\mathrm{n} \end{array}$	ect answer with or without working working necessary)	award $2 / 2$ award $1 / 2$
4. (c)	Ans: Invergow colder than Abergrange. Temperatures vary more in Invergow - ${ }^{1}$ interpret/communicate: interpret calculated statistics \bullet^{2} interpret/communicate: interpret calculated statistics	- ${ }^{1}$ Invergow colder than Abergrange ${ }^{2}$ Temperatures vary more in Invergow 2 marks
NOTES:		
1. Do not accept eg The median is smaller in Invergow The range is bigger in Invergow		

$\begin{gathered} \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
5.	Ans: $x=6$ ${ }^{1}$ process: collect terms in x - 2 process: collect constants ${ }^{3}$ process: solve equation for x	- $3 x$ - ${ }^{2} 18$ - ${ }^{3} x=6$

1. For answers without valid working award $0 / 3$
eg (i) $x=6$ without working
(ii) $11+5 \times 6=2 \times 6+29 \rightarrow x=6$
2. For the award of the 3 rd mark an answer of the form $x=$ is required
3. Answers acceptable for partial credit (valid working must be shown)
(i) $3 x=18 \rightarrow 6$
(ii) $3 x=40 \rightarrow x=13 \cdot 3 \ldots \ldots \quad$ award $2 / 3$
(iii) $7 x=18 \rightarrow x=2 \cdot 5 \ldots \ldots$
(iv) $7 x=40 \rightarrow x=5 \cdot 7 \ldots \ldots$ award $1 / 3$
(Disregard incorrect rounding)

Question No	Marking Scheme Give 1 mark for each •						Illustrations of evidence for awarding a mark at each •
6.	Ans:						
	Carnation	Daffodil	Lily	Iris	Rose	Total Price	
	\checkmark	\checkmark			\checkmark	£10.00	
	\checkmark		\checkmark		\checkmark	£10.50	
		\checkmark	\checkmark	\checkmark		£10.50	
		\checkmark		\checkmark	\checkmark	£11.00	
		\checkmark	\checkmark		\checkmark	£12.00	
	- ${ }^{1}$ interpret: interpret information - ${ }^{2}$ strategy: find some possibilities -3 strategy: find all possibilities						- ${ }^{1}$ one correct combination - 2 two more correct combinations - ${ }^{3}$ final two correct combinations

1. Allow one addition error or omission in total price column

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
7. (a)	Ans: 3.9 - ${ }^{1}$ communicate: complete table - ${ }^{2}$ strategy: know how to find mean ${ }^{3}$ process: correct division of total $(\Sigma f x)$	-1 $\begin{array}{r}245 \\ 246 \\ \hline \text { Total = 780 }\end{array}$ - ${ }^{2} 780 \div 200$ $\bullet 3.9$
NOTES:		
1. Fin	answer with working without w .9 $3 / 3$ $2 / 3$ $30(780 \div 6)$ $2 / 3$ $1 / 3$	
2. Awa (a) (b)	d of 3 rd mark eg $778 \div 6$ Accept $129 r 4,129 \cdot 7,129 \cdot 6 \ldots$. Do not accept 129•4, 130, 129	
3. Whe	candidate calculates mean in (b) then award 0/1 in	d all 3 marks for (a) are available.
7. (b)	Ans: 5 - ${ }^{1}$ interpret: identify mode	-1 5
NOTES:		

$\begin{gathered} \hline \text { Question } \\ \text { No } \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
9.	Ans: 20 ${ }^{1}$ process: interpret one billion \bullet process: interpret 2×10^{10} ${ }^{3}$ process: express 2×10^{10} in billions	- 1000000000 -2 20000000000 - ${ }^{3} 20$ 3 marks
NOTES: 1. Correct answer without working award $0 / 3$		
10.	Ans: 15	- $1 \frac{2 \times-5 \times 6}{-4}$ -2 $2 \times-5 \times 6=-60$ - ${ }^{3} \quad 15$
NOTES:		
1. ± 15 2. $2 \times$	without working $\frac{5 \times 6}{4}= \pm 15$ (working must be shown)	ard $1 / 3$ ard a minimum of $1 / 3$

TOTAL MARKS FOR PAPER 1

Mathematics - Intermediate 1: Paper 2, Units 1, 2 and 3

$\begin{aligned} & \hline \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1.	Ans: $\frac{10}{2000}$ - ${ }^{1}$ process: find probability	- $\frac{10}{2000}$ or equivalent 1 mark
NOTES: 1. Accept 10:2000, 10 out of 2000, 10 in 2000, 10-2000, $0 \cdot 005$ or cancelled down versions of the above 2. Do not penalise a correct answer followed by a cancelling error		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
2. (a)	Ans: - ${ }^{1}$ communicate: plot point - ${ }^{2}$ communicate: plot points	- 1 plot A or C $\bullet{ }^{2} \operatorname{plot} \mathrm{~A}, \mathrm{~B}$ and C 2 marks
2. (b)	Ans: - strategy: plot 4th vertex of kite - ${ }^{2}$ communicate: state co-ordinates of D	- ${ }^{1}$ plot $(-3,-1)$ - ${ }^{2} \quad(-3,-1)$ 2 marks
NOTES:		
1. 2. 3. 4.	Points need not be labelled If a candidate consistently plots (y, x) instead of (x, y) (a) $\operatorname{Plot} \mathrm{A}(4,-3), \mathrm{B}(4,2), \mathrm{C}(-5,6)$ (b) Plot $\mathrm{D}(-1,-3)$ and write $(-3,-1)$ Final mark is not available if D is in first quadrant In (b) if $(-3,-1)$ is written down but not plotted	award $1 / 2$ award $2 / 2$ award $2 / 2$

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
3.	Ans: $48 \mathbf{m p h}$ - 1 strategy: know how to find speed $\bullet{ }^{2}$ process: find time - ${ }^{3}$ process: find speed	- ${ }^{1} S=\frac{D}{T}$ - ${ }^{2} \quad 11 \mathrm{~h} 30 \mathrm{~m}$ -3 48

1. 48 without working
award $1 / 3$
2. Examples of some common answers (working must be shown)
(a) implied time $=11 \mathrm{~h} 30 \mathrm{~m}$
(i) $\frac{552}{11 \cdot 5}=48$
award $3 / 3$
(ii) $\frac{552}{11 \cdot 3(0)}=48 \cdot 8 \ldots$.
award 2/3 $\quad \checkmark \checkmark x$
(b) implied time $=11 \mathrm{~h} 50 \mathrm{~m}$
(i) $\frac{552}{11 \cdot 83}=46 \cdot 6 \ldots$ award $2 / 3$
$\checkmark \times \checkmark$
(ii) $\frac{552}{11 \cdot 50}=48$
award $1 / 3 \quad \boldsymbol{J x X}$
3. Divisions which do not give a whole number answer must be rounded or truncated to at least one decimal place
eg \quad implied time $=12 \mathrm{~h} 30 \mathrm{~m}$
(i) $\frac{552}{12 \cdot 5}=44 \cdot 16$ or $44 \cdot 2$ or $44 \cdot 1 \quad$ award $2 / 3 \quad \checkmark x \checkmark$
(ii) $\frac{552}{12 \cdot 5}=44 \quad$ award $1 / 3 \quad \checkmark \times x$
(iii) $\frac{552}{12 \cdot 3(0)}=44 \cdot 8 \ldots$ or $44 \cdot 8$ or $44 \cdot 9$ award $1 / 3 \quad \checkmark \times x$
4. 3rd mark is not available for division by whole number of hours
5. For award of 3rd mark assume answer is in mph unless units are stated
eg $\frac{552}{690}=0 \cdot 8$ miles per minute award $3 / 3$
$\frac{552}{690}=0 \cdot 8 \quad$ award $2 / 3$
6. For $\mathrm{S}=\mathrm{DT}$ the final 2 marks are available
eg $\quad 552 \times 11.5=6348$
award $2 / 3$

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each \bullet
4.	Ans: $\boldsymbol{n}<\mathbf{5}$	
	\bullet^{1} process: collect constants	
	\bullet^{2} process: solve inequality for n	$\bullet^{1} 8 n<40$
NOTES:	$\bullet^{2} n<5$	$\mathbf{2}$ marks

1. For answers without valid working award $0 / 2$
eg (i) $n<5$ without working
(ii) $8 \times 5-3<37 \rightarrow n<5$
2. Answers acceptable for partial credit (valid working must be shown)
(i) $8 n<40 \rightarrow<5$
(ii) $8 n<40 \rightarrow n=5$ or $8 n=40 \rightarrow n=5$
(iii) $8 n<34 \rightarrow n<4 \cdot 25$ or $n<\frac{17}{4}$
award 1/2

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
5. (a)	Ans:	\bullet^{1} see answer $\mathbf{1}$ mark
NOTES: 1. Accept straight lines with $5000 \leq$ gradient ≤ 20000 and \|(points above line) - (points below line) $\mid \leq 2$ eg		
5. (b)	Ans: 55000 miles - ${ }^{1}$ interpret: interpret scattergraph	$\bullet^{1} 55000(\pm 2000)$
NOTES:		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
6. (a)	Ans: $8+3 t$ -1 process: multiply out brackets \bullet - ${ }^{2}$ process: collect like terms	- ${ }^{1} 8-2 t+5 t$ or $8-2 t$ $\bullet^{2} 8+3 t$ 2 marks
NOTES:		
6. (b)	Ans: $5(2 y-7)$ ${ }^{1}$ process: identify common factor $\bullet 2$ process: factorise	- 15 or $2 y-7$ - ${ }^{2} 5(2 y-7)$ 2 marks
NOTES:		
7.	Ans: £36 000 - ${ }^{1}$ strategy: correct method \bullet process: carry out calculations correctly	36000 (award 1 for correct method or $\frac{90}{2 \cdot 50}=36$ or $\frac{1000}{2 \cdot 5}=400$) 2 marks
NOTES:		
1. Corr	ect answer with or without working	award $2 / 2$
2. 36,4	00 (no working necessary)	award 1/2

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
9.		Method 1 - ${ }^{1} 25 \cdot 99 \times 1 \cdot 52$ - ${ }^{2} 39 \cdot 5048$ - ${ }^{3}$ Yes. It costs $€ 39 \cdot 50$ in Scotland Method 2 - $1 \quad 38 \cdot 50 \div 1 \cdot 52$ - ${ }^{2} 25 \cdot 328 \ldots .$. - Yes. It costs $£ 25 \cdot 33$ (or £ $25 \cdot 32$) in Spain
NOTES:		
1. Do	accept "Yes" without working/valid reason	award 0/3
	otable answers (no working necessary) Yes. It costs $£ 25 \cdot 33$ (or $£ 25 \cdot 32$) OR Yes. It costs $€ 39 \cdot 50$ in Scotland Yes. It costs $£ 25 \cdot 328$.... OR Yes. It costs $€ 39 \cdot 5048$ in Scotland Yes. It costs $€ 39 \cdot 50$ He saves 67p (or 66p) OR $€ 1$ He saves $£ 1$ It costs 67 p (or 66p) or $€ 1$ more in Scotland It costs 67 p (or 66p) or $€ 1$ more	award $3 / 3$
3. Tre	subtraction errors as insignificant. $.99-25 \cdot 33 \rightarrow$ He saves 69 p.	award $3 / 3$
4. The final two marks are available for $17 \cdot 09 \ldots . .(25 \cdot 99 \div 1 \cdot 52)$ or $58 \cdot 52(38 \cdot 50 \times 1 \cdot 52)$ followed by a consistent conclusion and valid reason		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •		Illustrations of evidence for awarding a mark at each •
10.	Ans: 53°		
	- ${ }^{1}$ strategy:	know to use right-angled triangle	- 1 use 1.5 and 0.9 in rightangled triangle diagram or formula
	- ${ }^{2}$ strategy:	know how to use cosine ratio	- $\quad \cos x^{\circ}=\frac{0 \cdot 9}{1 \cdot 5}$
	- ${ }^{3}$ process:	calculate ratio	- ${ }^{3} \quad \cos x^{\circ}=0 \cdot 6$
	$\bullet{ }^{4}$ process:	carry out trigonometric calculation	$\bullet^{4} 53 \cdot \ldots$
			4 marks

NOTES:

1. Correct answer without working
award 3/4
2. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $3 / 4$ (working must be shown) eg
(a) $\sin x=\frac{0 \cdot 9}{1 \cdot 5} \rightarrow x=36 \cdot \ldots$ or $37 \quad$ award $3 / 4 \quad \checkmark X \checkmark \checkmark$
(b)

right angle need not be marked
3. Accept variations in answers due to rounding.
4.

$0 \cdot 92$. (radians used) OR 59•03..... (grads used) with working
without working 3/4

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
12.	Ans: 9.3..... - process: substitute into formula - ${ }^{2}$ process: start to evaluate ${ }^{3}$ process: complete evaluation	- $1 \quad \sqrt{9 \cdot 81 \times 9}$ ${ }^{-2} \quad \sqrt{88 \cdot 29}$ -3 $9 \cdot 3 \ldots$ 3 marks
NOTES: 1. Do 2. (a) (b) (c) (d) (e) 3. (a) (b)	ot penalise premature or incorrect rounding Final answers $\begin{aligned} & 9 \cdot 4,9 \cdot 3 \ldots \cdot \\ & 9 \\ & 28 \cdot 1 \ldots \ldots(\sqrt{9 \cdot 81} \times 9), 29 \cdot 43(9 \cdot 81 \times \sqrt{9}) \\ & 4 \cdot 3 \ldots(\sqrt{9 \cdot 81}+9) \\ & 3 \cdot 1 \ldots(\sqrt{9 \cdot 819}) \\ & \sqrt{9 \cdot 81 \times 9}=88 \cdot 29 \text { or } \sqrt{88 \cdot 29} \\ & 9 \cdot 81 \times 9=88 \cdot 29 \text { or } 88 \cdot 29 \end{aligned}$	working without working $3 / 3$ $3 / 3$ $3 / 3$ $0 / 3$ $2 / 3$ $2 / 3$ $2 / 3$ $2 / 3$ $1 / 3$ $0 / 3$ $\operatorname{ard} 2 / 3$ $\operatorname{ard} 1 / 3$
13.	Ans: 45\% - ${ }^{1}$ strategy: know to express 18 as a fraction of 40 - 2 strategy: know how to express $\frac{18}{40}$ as a percentage - ${ }^{3}$ process: divide and multiply correctly	- $\quad \frac{18}{40}$ - $2 \quad \frac{18}{40} \times 100$ -3 45 3 marks
NOTES: 1. Cor 2. Acc (a) (b)	ect answer without working ptable answers for partial credit (no working necessary) $\begin{aligned} & \frac{40}{18} \times 100=222(\ldots .) \\ & \frac{40}{100} \times 18 \text { or } \frac{18}{100} \times 40=7 \cdot 2 \end{aligned}$	award $3 / 3$ $\operatorname{award} 2 / 3 \quad \times \checkmark \checkmark$ award $1 / 3 \times x$

Question No		arking Scheme 1 mark for each •	Illustrations of evidence for awarding a mark at each •
14.	Ans: $1.46 \mathbf{m}^{\mathbf{2}}$		
	- ${ }^{1}$ strategy:	know to calculate area of semicircle	- $A=\frac{1}{2} \pi r^{2}$
	${ }^{2}$ strategy:	substitute correct radius into area formula	- ${ }^{2} \frac{1}{2} \times \pi \times 0 \cdot 3^{2}$
	- ${ }^{3}$ strategy:	know to subtract area of semicircle from area of rectangle	- $\quad(2 \times 0 \cdot 8)-\left(\frac{1}{2} \times \pi \times 0 \cdot 3^{2}\right)$
	${ }^{4}$ process:	carry out all calculations correctly (must include a circle calculation and either the squaring of a number or a division by 2)	- ${ }^{4} 1.458 \ldots .$.
	- ${ }^{5}$ process:	round to 2 decimal places	${ }^{5} 1.46$ (5 marks

NOTES:

1. First 2 marks not available if $C=\pi d$ is used
2. Examples of some common answers
(a) $1 \cdot 6-\frac{1}{2} \times \pi \times 0 \cdot 3^{2}=1.46$
(b) $16000-\frac{1}{2} \times \pi \times 30^{2}=14586 \cdot 28$
(c) $1 \cdot 6-\pi \times 0 \cdot 3^{2}=1.32$
(d) $1 \cdot 6-\frac{1}{2} \times \pi \times 0 \cdot 6^{2}=1 \cdot 03$
(e) $1 \cdot 6-\pi \times 0 \cdot 6^{2}=0.47$
(f) $1 \cdot 6-\frac{1}{2} \times \pi \times 0 \cdot 6=0.66$
(g) $1 \cdot 6-\pi \times 0 \cdot 6=-0 \cdot 28$
with working without working
award 5/5 award 4/5
award 4/5 award 3/5
award $4 / 5 \quad$ award $0 / 5$
award 4/5 award 0/5
award 3/5 award 0/5
award 3/5 award 0/5
award $2 / 5 \quad$ award $0 / 5$
3. (a) Unrounded or incorrectly rounded versions of the above answers should be awarded 1 mark less than those shown above.
(b) 1.4 without working award $0 / 5$.
4. 5th mark only available where candidate is required to round circle calculation to 2 decimal places

TOTAL MARKS FOR PAPER 2

