Indices - Multiplying and Dividing Rules

LI

- Know what an index (pl. indices) is.
- Know and use the Rules of Indices for x and \div.

SC

- + and - numbers.

An index is a power (aka exponent)

$$
\begin{aligned}
& 2^{3}=2 \times 2 \times 2 \\
& 3^{4}=3 \times 3 \times 3 \times 3
\end{aligned}
$$

Rules of Indices

$$
\begin{aligned}
10^{3} \times 10^{2} & =(10 \times 10 \times 10) \times(10 \times 10) \\
& =1000 \times 100 \\
& =100000 \\
\therefore \quad 10^{3} \times 10^{2} & =10^{5}
\end{aligned}
$$

We thus have the $1^{\text {st }}$ Rule of Indices:

$$
a^{m} \times a^{n}=a^{m+n}
$$

Example 1

Simplify fully :
(a) $3^{4} \times 3^{7}$
$=3^{4+7}$
$=3^{11}$
(b) $w^{17} \times w^{-2}$

$$
=w^{17+(-2)}
$$

$$
=w^{15}
$$

Example 2

Simplify fully :
(a) $5 \mathrm{~m}^{3} \times 3 \mathrm{~m}^{6}$

$$
\begin{aligned}
& =15 \mathrm{~m}^{3+6} \\
& =15 \mathrm{~m}^{9}
\end{aligned}
$$

(b) $6 w^{-3} \times 8 w^{-9}$

$$
=48 w^{-3+(-9)}
$$

$$
=48 \mathrm{w}^{-12}
$$

$$
\begin{aligned}
10^{6} \div 10^{2} & =(10 \times 10 \times 10 \times 10 \times 10 \times 10) \div(10 \times 10) \\
& =1000000 \div 100 \\
& =10000 \\
\therefore 10^{6} \div 10^{2} & =10^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We thus have the } 2^{\text {nd }} \text { Rule of Indices: } \\
& \qquad a^{m} \div a^{n}=a^{m-n} \\
& \text { (m, } n \text { are any numbers) }
\end{aligned}
$$

Example 3

Simplify fully :
(a) $5^{9} \div 5^{7}$

$$
=5^{9-7}
$$

$$
=5^{2}
$$

(b) $f^{11} \div f^{-3}$
$=f^{11-(-3)}$
$=f^{14}$

Example 4

Simplify fully :
(a) $20 \mathrm{~s}^{30} \div 10 \mathrm{~s}^{20}$

$$
=2 s^{30-20}
$$

$$
=2 \mathrm{~s}^{10}
$$

(b) $98 x^{14} \div 4 x^{7}$
$=(98 / 4) x^{14-7}$
$=(49 / 2) x^{7}$

$$
\begin{aligned}
10^{3} \div 10^{3}= & (10 \times 10 \times 10) \div(10 \times 10 \times 10) \\
& =1000 \div 1000 \\
& =1
\end{aligned}
$$

$$
\text { But } 10^{3} \div 10^{3}=10^{3-3}=10^{\circ} \text { (using Rule 2) }
$$

We thus have the $3^{\text {rd }}$ Rule of Indices:

$$
a^{0}=1
$$

Some Notation

Example 5

Simplify fully, expressing the answers with positive indices:
(a) $3 D^{3} y^{-2} \times 4 D^{-7} y^{5}$

$$
\begin{aligned}
& =12 D^{-4} y^{3} \\
& =12 \times D^{-4} \times y^{3} \\
& =12 \times \frac{1}{D^{4}} \times y^{3} \\
& =\frac{12 y^{3}}{D^{4}}
\end{aligned}
$$

(b) $\frac{8 m^{13} a^{6} \times 3 m^{-9} a^{2}}{48 m^{4} a^{87}}$

$$
=\frac{24 m^{4} a^{8}}{48 m^{4} a^{87}}
$$

$$
=\frac{1}{2 a^{79}}
$$

Questions

1 Simplify these expressions. Write your answer in index form with a positive exponent.
a $4^{5} \times 4^{3}$
b $7^{4} \times 7$
c $x^{10} \times x^{2}$
d $t^{2} \times t^{3} \times t^{4}$
e $3^{2} \times 3^{-7}$
f $c^{3} \times c^{-9}$
g $a^{8} \times a^{-8}$
h $4 y^{3} \times 5 y^{6}$
i $c \times 4 c^{2} \times 2 c^{3} \quad$ j $\quad 8 c^{2} \times 3 c^{-7}$
k $10 a^{7} \times 3 a^{-20}$
I $4 t^{3} \times 3 t^{-8} \times 2 t^{2}$

2 Simplify these expressions leaving your answer in index form.
a $3^{7} \div 3^{2}$
b $6 \div 6^{3}$
c $x^{8} \div x^{5}$
d $t^{3} \div t$
e $p^{3} \div p^{-2}$
f $y^{-3} \div y^{-3}$
g $12 y^{10} \div 3 y^{3}$
h $24 y^{3} \div 12 y^{8}$
i $15 x^{2} \div 3 x^{-4}$
j $42 p^{6} \div(-7 p)^{-2}$
k $\frac{4 t^{5} \times-7 t^{3}}{14 t^{-4}}$
I $\frac{5 y^{2} \times 4 y^{-6}}{2 y^{3}}$

3 Simplify these expressions.
a $3 x^{2} y \times 5 x^{3} y^{2}$
b $\quad 3 a^{2} b^{3} \times 7 a b^{4}$
c $30 x^{3} y \div 6 x^{2} y^{4}$

Answers

