Indices - Lesson 1

Indices - Multiplying and Dividing Rules

LI

- Know what an index (pl. indices) is.
- Know and use the Rules of Indices for x and \div .

<u>SC</u>

• + and - numbers.

An index is a power (aka exponent)

$$2^{3} = 2 \times 2 \times 2$$

$$3^4 = 3 \times 3 \times 3 \times 3$$

Rules of Indices

$$10^{3} \times 10^{2} = (10 \times 10 \times 10) \times (10 \times 10)$$

$$= 1000 \times 100$$

$$= 100000$$

$$\therefore 10^{3} \times 10^{2} = 10^{5}$$

We thus have the 1st Rule of Indices:

$$a^m \times a^n = a^{m+n}$$

(m, n are any numbers)

(a)
$$3^4 \times 3^7$$

$$= 3^{4+7}$$

$$= 3^{11}$$

(b)
$$w^{17} \times w^{-2}$$

$$= w^{17 + (-2)}$$

$$= w^{15}$$

(a)
$$5 \text{ m}^3 \times 3 \text{ m}^6$$

= 15 m^{3+6}
= 15 m^9

(b)
$$6 w^{-3} \times 8 w^{-9}$$

= $48 w^{-3 + (-9)}$

$$10^{6} \div 10^{2} = (10 \times 10 \times 10 \times 10 \times 10 \times 10) \div (10 \times 10)$$

$$= 10000000 \div 100$$

$$= 10000$$

$$\therefore 10^{6} \div 10^{2} = 10^{4}$$

We thus have the 2nd Rule of Indices:

$$a^{m} \div a^{n} = a^{m-n}$$

(m, n are any numbers)

(a)
$$5^9 \div 5^7$$

$$= 5^{9-7}$$

(b)
$$f^{11} \div f^{-3}$$

$$= f^{11-(-3)}$$

$$= f^{14}$$

(a)
$$20 s^{30} \div 10 s^{20}$$

$$= 2 s^{30-20}$$

$$=$$
 2 s¹⁰

(b)
$$98 x^{14} \div 4 x^{7}$$

$$= (98/4) x^{14-7}$$

$$=$$
 (49/2) x^7

$$10^{3} \div 10^{3} = (10 \times 10 \times 10) \div (10 \times 10 \times 10)$$

$$= 1000 \div 1000$$

$$= 1$$
But $10^{3} \div 10^{3} = 10^{3-3} = 10^{0}$ (using Rule 2)

We thus have the 3rd Rule of Indices:

$$a^0 = 1$$

Some Notation

Simplify fully, expressing the answers with positive indices:

(a)
$$3 D^{3} y^{-2} \times 4 D^{-7} y^{5}$$

= $12 D^{-4} y^{3}$
= $12 \times D^{-4} \times y^{3}$
= $12 \times \frac{1}{D^{4}} \times y^{3}$
= $\frac{12 y^{3}}{D^{4}}$

(b)
$$\frac{8 m^{13} a^6 \times 3 m^{-9} a^2}{48 m^4 a^{87}}$$

$$= \frac{24 \text{ m}^4 \text{ a}^8}{48 \text{ m}^4 \text{ a}^{87}}$$

$$= \boxed{\frac{1}{2 \, \alpha^{79}}}$$

Questions

Simplify these expressions. Write your answer in index form with a positive exponent.

a
$$4^{5} \times 4^{3}$$

b
$$7^4 \times 7$$

c
$$x^{10} \times x^2$$

d
$$t^2 \times t^3 \times t^4$$

e
$$3^2 \times 3^{-7}$$

$$f c^3 \times c^{-9}$$

$$\mathbf{g} \quad a^8 \times a^{-8}$$

h
$$4y^3 \times 5y^6$$

i
$$c \times 4c^2 \times 2c^3$$

$$j 8c^2 \times 3c^{-7}$$

$$k 10a^7 \times 3a^{-20}$$

a
$$4^{5} \times 4^{3}$$
 b $7^{4} \times 7$ c $x^{10} \times x^{2}$ d $t^{2} \times t^{3} \times t^{4}$
e $3^{2} \times 3^{-7}$ f $c^{3} \times c^{-9}$ g $a^{8} \times a^{-8}$ h $4y^{3} \times 5y^{6}$
i $c \times 4c^{2} \times 2c^{3}$ j $8c^{2} \times 3c^{-7}$ k $10a^{7} \times 3a^{-20}$ l $4t^{3} \times 3t^{-8} \times 2t^{2}$

2 Simplify these expressions leaving your answer in index form.

a
$$3^7 \div 3^2$$

b
$$6 \div 6^3$$

$$x^8 \div x^5$$

d
$$t^3 \div t$$

e
$$p^3 \div p^{-2}$$

$$f \quad y^{-3} \div y^{-3}$$

$$g 12y^{10} \div 3y^3$$

h
$$24y^3 \div 12y^8$$

i
$$15x^2 \div 3x^{-4}$$

$$42p^6 \div (-7p)^{-2}$$

$$k = \frac{4t^5 \times -7t^3}{14t^{-4}}$$

a
$$3^7 \div 3^2$$
 b $6 \div 6^3$ c $x^8 \div x^5$ d $t^3 \div t$
e $p^3 \div p^{-2}$ f $y^{-3} \div y^{-3}$ g $12y^{10} \div 3y^3$ h $24y^3 \div 12y^8$
i $15x^2 \div 3x^{-4}$ j $42p^6 \div (-7p)^{-2}$ k $\frac{4t^5 \times -7t^3}{14t^{-4}}$ l $\frac{5y^2 \times 4y^{-6}}{2y^3}$

3 Simplify these expressions.

a
$$3x^2y \times 5x^3y^2$$

b
$$3a^2b^3 \times 7ab^4$$

a
$$3x^2y \times 5x^3y^2$$
 b $3a^2b^3 \times 7ab^4$ **c** $30x^3y \div 6x^2y^4$

Answers

1	a	48
	b	7^{5} x^{12}
	C	
	d	t^9
	e	1 25
	f	$\frac{\frac{1}{3^5}}{\frac{1}{c^6}}$ $a^0 = 1$
	g	
	h	$20y^9 \\ 8c^6$
	i	$8c^{6}$
	j	$\frac{24}{c^5}$
	k	$\frac{24}{c^5}$ $\frac{30}{a^{13}}$
	I	$\frac{24}{t^3}$

2 a
$$3^5$$

b 6^{-2}
c x^3
d t^2
e p^5
f $y^0 = 1$
g $4y^7$
h $2y^{-5}$
i $5x^6$
j $2058p^8$
k $-2t^{12}$
l $10y^{-7}$