2015 Mathematics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:
1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 One mark is available for each •. There are no half marks.
3 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.

6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

> Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve
$\begin{array}{ll}\text { Illustrative Scheme: } \quad \bullet^{5} \quad x=2, x=-4 \\ & \text { - }^{6} y=5, y=-7\end{array}$

Markers should choose whichever method benefits the candidate, but not a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ should be simplified to 43

$\frac{45}{\frac{15}{0.3}}$ should be simplified to 50	$\frac{4 / 6}{3}$ should be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8
The square root of perfect squares up to and including 100 must be known.	

9 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

10 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form (bad form only becomes bad form if subsequent working is correct), e.g. $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$
written as

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& 2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2 \\
& 2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \text { gains full credit }
\end{aligned}
$$

- Repeated error within a question, but not between questions.

11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions.

All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

	$\frac{\text { Question }}{1}$	$\frac{\text { Answer }}{C}$
	2	B
	3	D
	4	A
	5	C
	6	B
	7	C
	8	D
	9	B
	10	D
	11	C
	12	C
	13	B
	14	D
	15	A
	16	B
	17	D
	18	C
	19	B
	20	A
Summary	A	3
	B	6
	C	6
	D	5

Paper 1 - Section B

Notes:

1. Communication at \bullet^{2} must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before \bullet^{2} is awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(1)=0$ so $(x-1)$ is a factor'
- 'since remainder is 0 , it is a factor'
- the 0 from the table linked to the word 'factor' by e.g. 'so', 'hence', ' \therefore ', ' \rightarrow ', ' \Rightarrow '

3. Do not accept any of the following for \bullet^{2} :

- double underlining the zero or boxing the zero without comment
- ' $x=1$ is a factor ', ' $(x+1)$ is a factor ', ' $x=1$ is a root', ' $(x+1)$ is a root ', " $(x-1)$ is a root"
- the word 'factor' only, with no link

4. At • ${ }^{4}$ the expression may be written as $(x-1)(x-1)(x-4)$ in any order.
5. An incorrect quadratic correctly factorised may gain \bullet^{4}.
6. Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate that $b^{2}-4 a c<0$ to gain ${ }^{4}$.
7. $=0$ must appear at \bullet^{1} or \bullet^{2} for \bullet^{2} to be awarded.
8. For candidates who do not arrive at 0 at the \bullet^{2} stage $\bullet^{2} \cdot{ }^{3} \bullet^{4}$ are not available.
9. Do not penalise candidates who attempt to solve a cubic equation. However, within this working there may be evidence of the correct factorisation of the cubic.
10. Evidence for $\bullet^{3} \&{ }^{4}$ may appear in part (b).

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
21 (b)(i).			
$\cdot{ }^{5}$ know to and differentiate - ${ }^{6}$ find gradient - ${ }^{7}$ state equation of tangent		- ${ }^{5} 3 x^{2}-12 x+11$ - ${ }^{6} 2$ - ${ }^{7} y=2 x+1$	3
Notes:			
11. \bullet^{7} is only available if an attempt has been made to find the gradient from differentiation. 12. At mark \bullet^{7} accept $y-3=2(x-1), y-2 x=1$ or any other rearrangement of the equation.			
Commonly Observed Responses:			
Candidate A$\begin{aligned} & \text { using } \quad y=m x+c \\ & x=1 \quad y=3 \quad m=2 \\ & \Rightarrow 3=2 \times 1+c \\ & \Rightarrow c=1 \quad \bullet^{7} \checkmark \\ & y=2 x+1 \end{aligned}$			
21 (b)(ii).			
\bullet^{8} set $y_{\text {CURVE }}=y_{\text {LINE }}$ - ${ }^{9}$ arrange equation in standard cubic form - ${ }^{10}$ identify x coordinate of B and calculate y coordinate		$\bullet^{8} x^{3}-6 x^{2}+11 x-3=2 x+1$ - ${ }^{9} x^{3}-6 x^{2}+9 x-4=0$ - ${ }^{10}(4,9)$	3
Notes:			
13. \bullet^{9} is only available if ' $=0$ ' appears in at least one arrangement of the equation. 14. Solutions at \bullet^{10} must be consistent with working at \bullet^{4} and \bullet^{7}. 15. Candidates who obtain three distinct factors at \bullet^{4} can gain \bullet^{8} and \bullet but \bullet^{10} is unavailable. 16. For ${ }^{10}$ accept $x=4, y=9$. 17. Do not penalise the appearance of $(1,3)$.			
Commonly Observed Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
22.			
- ${ }^{1}$ arrange in differentiable form - ${ }^{2}$ start differentiation - ${ }^{3}$ complete differentiation and set $f^{\prime}(x)=0$ - ${ }^{4}$ evaluate f at stationary point		- ${ }^{1} f(x)=4 x^{-2}+x$ $\bullet^{2}-8 x^{-3}$ or 1 - ${ }^{3}-8 x^{-3}+1=0$ - ${ }^{4} x=2, f(x)=3$ - ${ }^{5} f(1)=5, f(4)=\frac{17}{4}($ or $4 \cdot 25)$ $\cdot{ }^{6} \max 5, \min 3$	6

Notes:

1. Candidates must attempt to differentiate a term with a -ve or fractional power by \bullet^{3} for \bullet^{3} to be awarded.
2. \bullet^{3} is not available for simply stating ' $f^{\prime}(x)=0$ '. A clear link between the candidates derivative and ' $f^{\prime}(x)=0$ 'is required.
3. For candidates who integrate, but clearly believe they are finding the derivative $\boldsymbol{0}^{1} \boldsymbol{e}^{4} \boldsymbol{e}^{5}{ }^{6}$ are available (see CORs - K, L, and M). In other instances where candidates have integrated then only \bullet^{1} and \bullet^{5} are available. A numerical approach can only gain \bullet^{5}.
4. \bullet^{5} and \bullet^{6} are not available to candidates who consider stationary points only.
5. Treat maximum $(1,5)$ and minimum $(2,3)$ as bad form.
6. Vertical marking is not applicable to \bullet^{5} and \bullet^{6}.
7. The appearance of $(2,3)$ following any 2 nd derivative or nature table gains \bullet^{4}.
8. If at the \bullet^{4} stage a value of x is obtained outwith the given interval then \bullet^{4} is unavailable, but \bullet^{6} may still be gained (see CORs - F and G).
9. Candidates who consider the end values but do not evaluate the stationary value cannot gain ${ }^{6}$.

Commonly Observed Responses:

Candidate A	Candidate B	Candidate C	Candidate D
$f(x)=4 x^{-2}+x$	$f(x)=4 x^{-2}+x$	$f(x)=4 x^{-2}+x \quad \bullet^{1} \checkmark$	$f(x)=4 x^{-2}+x \quad$-1
$f^{\prime}(x)=-8 x^{-3}+1 \bullet \checkmark$.$^{2} \wedge$	$f^{\prime}(x)=-8 x^{-3}+1 \bullet^{2} \checkmark$	$-8 x^{-3}+1 \bullet^{2} \checkmark$
for stationary		for stationary $\bullet^{3} \wedge$	for stationary
points $f^{\prime}(x)=0$	for stationary	points $\frac{d y}{d x}$	points $f^{\prime}(x)=0$
With no further working			

Question	Generic Scheme	Illustrative Scheme	Max Mark
24.			
- ${ }^{1}$ interp substit - ${ }^{2}$ know to - ${ }^{3}$ simplify - ${ }^{4}$ state r - ${ }^{3}$ simplify - ${ }^{4}$ eviden	ues of a, b and c and inant ≥ 0 thod 1 quadratic inequation of k thod 2 quadratic expression of values of k	- ${ }^{1} 3^{2}-4 \times k \times 9 k$ $\bullet^{2} \ldots \geq 0$ Method 1 - ${ }^{3}$ $k^{2} \leq \frac{9}{36} \text { or } 9(1-2 k)(1+2 k) \geq 0$ - ${ }^{4}-\frac{1}{2} \leq k \leq \frac{1}{2}$ Method 2 $\bullet^{3} 9-36 k^{2}=0 \Rightarrow k=-\frac{1}{2}, \frac{1}{2}$ - ${ }^{4}$ graph or other evidence leading to $-\frac{1}{2} \leq k \leq \frac{1}{2}$	4
Notes:			
1. The " ≥ 0 "must appear at least once at the \bullet^{1} or \bullet^{2} stage for \bullet^{2} to be awarded. 2. If an x appears in the candidate's 'discriminant' only \bullet^{2} may be awarded. 3. The use of any expression masquerading as the discriminant can gain only $\bullet{ }^{2}$ at most. 4. Award \bullet^{2} to candidates who write BOTH $9-36 k^{2}>0$ AND $9-36 k^{2}=0$. 5. For candidates who at \bullet^{3} simplify or factorise an equation \bullet^{4} can only be awarded if evidence of solving an inequation (for example a graph) appears. 6. At \bullet^{2} stage, quoting $b^{2}-4 a c \geq 0$ is not sufficient. 7. At \bullet^{3} stage, in Method 2 , solutions for k need not be simplified.			
Commonly Observed Responses:			

Commonly Observed Responses:	
Candidate A $\begin{array}{ll} D(t)=\left(5 t^{2}-40 t+125\right)^{-1} & \bullet^{3} \times \\ D^{\prime}(t)=-\left(5 t^{2}-40 t+125\right)^{-2} \ldots & \bullet \bullet^{4} \times \text { see note } 1 . \\ =\ldots \ldots \times(10 t-40) & \bullet \sqrt{ } 1 \\ D^{\prime}(5)=\frac{-10}{50^{2}}<0 \therefore \text { decreasing } & \end{array}$	Candidate B $\begin{aligned} & D(t)=\left(5 t^{2}-40 t+125\right)^{-\frac{1}{2}} \\ & D^{\prime}(t)=-\frac{1}{2}\left(5 t^{2}-40 t+125\right)^{-\frac{3}{2}} \ldots \\ & =\ldots . \times(10 t-40) \\ & D^{\prime}(5)=\frac{-5}{\sqrt{50^{3}}}<0 \therefore \text { decreasing } \end{aligned}$
Candidate C $\begin{array}{ll} D(t)=\left(5 t^{2}-40 t+125\right)^{\frac{1}{2}} & \bullet^{3} \checkmark \\ D^{\prime}(t)=\frac{1}{2}\left(5 t^{2}-40 t+125\right)^{\frac{3}{2}} \ldots & \bullet^{4} \times \\ =\ldots . . \times(10 t-40) & \bullet^{6} \sqrt{ } \end{array}$	Candidate D $\begin{aligned} & D(t)=\left(5 t^{2}-40 t+125\right)^{\frac{1}{2}} \\ & D^{\prime}(t)=\frac{1}{2}\left(5 t^{2}-40 t+125\right)^{-\frac{1}{2}} \times 10 t-40 \\ & D^{\prime}(t)=5 t\left(5 t^{2}-40 t+125\right)^{-\frac{1}{2}}-40 \\ & D^{\prime}(5)=\frac{25}{\sqrt{50}}-40<0 \therefore \text { decreasing } \end{aligned}$
Candidate E $\begin{aligned} & D(t)=\left(5 t^{2}-40 t+125\right)^{\frac{1}{2}} \\ & D^{\prime}(t)=\frac{1}{2}\left(5 t^{2}-40 t+125\right)^{-\frac{1}{2}} \times 10 t-40 \\ & D^{\prime}(5)=\frac{1}{\sqrt{2}}>0 \therefore \text { increasing } \end{aligned}$	Candidate F - Alternative Method $\begin{aligned} & D^{2}=5 t^{2}-40 t+125 \\ & \frac{d D^{2}}{d t}=10 t-40 \\ & t=5 \Rightarrow \frac{d D^{2}}{d t}=50-40 \\ & \frac{d D^{2}}{d t}=10>0 \quad \therefore D^{2} \text { is increasing } \end{aligned}$ $\therefore \mathrm{D} \text { is increasing }$
Calculating Distance $\begin{array}{ll} t=5 & D=\sqrt{50} \\ t=4 & D=\sqrt{45} \end{array}$ so distance is increasing Award 0 marks as answer is not from differentiation.	Alternative Response $\begin{aligned} & D^{2}=5\left(t^{2}-8 t+25\right) \\ & D^{2}=5\left[(t-4)^{2}+9\right] \end{aligned}$ Graph together with a statement indicating that when $t=5, D^{2}$ is increasing and therefore D is increasing. Min TP at $x=4$

Paper 2

Question	Generic Scheme	Illustrative Scheme	Max Mark
1(b)			
$-{ }^{5}$ calculate midpoint of AC - ${ }^{6}$ calculate gradient of median - ${ }^{7}$ determine equation of median		- ${ }^{5} \mathrm{M}_{\mathrm{AC}}=(4,5)$ - ${ }^{6} m_{B M}=2$ - ${ }^{7} y=2 x-3$	3
Notes:			
4. ${ }^{6}$ and \bullet^{\prime} are not available to candidates who do not use a midpoint. 5. \bullet^{7} is only available as a consequence of using a non-perpendicular gradient and a midpoint. 6. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3 . 7. At \bullet^{7} accept $y-(-5)=2(x-(-1)), y-5=2(x-4), y-2 x+3=0$ or any other rearrangement of the equation.			
Commonly Observed Responses:			
$\begin{aligned} & \text { Median through } \mathrm{A} \\ & \mathrm{M}_{B C}=(6,-1) \\ & m_{A M}=\frac{-8}{11} \\ & y+1=\frac{-8}{11}(x-6) \text { or } y-7=\frac{-8}{11}(x+5) \end{aligned}$ Award 1/3		Median through C $\begin{aligned} & \mathrm{M}_{A B}=(-3,1) \\ & m_{C M}=\frac{1}{8} \\ & y-3=\frac{1}{8}(x-13) \text { or } y-1= \end{aligned}$ Award 1/3	
$\bullet{ }^{8}$ calculate x or y coordinate - ${ }^{9}$ calculate remaining coordinate of the point of intersection		$\bullet^{8} x=1$ or $y=-1$ - ${ }^{9} y=-1$ or $x=1$	2
Notes:			
8. If the candidate's 'median' is either a vertical or horizontal line then award 1 out of 2 if both coordinates are correct, otherwise award 0.			
Commonly Observed Responses:			
For candidates who find the altitude through B in part (b)$\begin{array}{ll} x=-\frac{1}{5} & \bullet 8 \sqrt{ } 1 \\ y=-\frac{7}{5} & \bullet \sqrt{\sqrt{2}} \end{array}$		Candidate A (b) $y-5=2(x-4)$ $y=2 x-13 \quad$-error (c) $\begin{gathered}x-3 y=4 \\ y=2 x-13\end{gathered}$ Leading to $x=7$ and $y=1$	

Notes:

2. Accept $16-(x-1)^{2}$ or $-\left[(x-1)^{2}-16\right]$ at \bullet^{5}.

Commonly Observed Responses:

Candidate A	Candidate B	Candidate C	
$\begin{array}{ll} -\left(x^{2}-2 x-15\right) & \bullet^{4} \checkmark \\ -\left(x^{2}-2 x+1-1-15\right) & \\ -(x-1)^{2}-16 & \bullet^{5} \times \end{array}$	$\begin{aligned} & 15+2 x-x^{2} \quad \bullet{ }^{3} \checkmark \\ & x^{2}-2 x-15 \quad \bullet \times \\ & p x^{2}+2 p q x+p q^{2}+r \text { and } p=1 \\ & q=-1 \quad r=-16 \quad \bullet \quad \begin{array}{l} \\ q \end{array} \quad \text { eased } \end{aligned}$	$\begin{aligned} & -x^{2}+2 x+15 \\ & -(x+1)^{2} \ldots \\ & -(x+1)^{2}+14 \end{aligned}$	$\begin{aligned} & \bullet^{3} \downarrow \\ & \bullet^{4} x \\ & \bullet^{5} x \end{aligned}$
Candidate D	Candidate E	Candidate F	
$\begin{array}{ll} 15+2 x-x^{2} & \bullet^{3} \checkmark \\ x^{2}-2 x-15 & \bullet^{4} \times \\ (x-1)^{2}-16 & \cdot{ }^{5} \sqrt{2} \text { eased } \end{array}$	$\begin{array}{ll} 15+2 x-x^{2} & \bullet^{3} \checkmark \\ x^{2}-2 x-15 & \bullet^{4} \checkmark \\ (x-1)^{2}-16 & \end{array}$	$\begin{aligned} & -x^{2}+2 x+15 \\ & -(x+1)^{2} \ldots \\ & -(x+1)^{2}+16 \end{aligned}$	
Eased, unitary coefficient of x^{2} (lower level skill)	so $15+2 x-x^{2}=-(x-1)^{2}+16$ - ${ }^{5}$		
2(c)			
- ${ }^{6}$ identify critical condition	$\begin{gathered} \bullet^{6}-1(x-1)^{2} \\ \text { or } f((g(x) \end{gathered}$	$\begin{aligned} & +16=0 \\ &)=0 \end{aligned}$	
- ${ }^{7}$ identify critical values			2

Notes:

3. Any communication indicating that the denominator cannot be zero gains \bullet^{6}.
4. Accept $x=5$ and $x=-3$ or $x \neq 5$ and $x \neq-3$ at \bullet^{7}.
5. If $x=5$ and $x=-3$ appear without working award $1 / 2$.

Commonly Observed Responses:

Candidate A	
1	
-(x-1) ${ }^{2}+16$	\checkmark
$x \neq 5$	

Candidate B

$\frac{1}{f(g(x))}$	
$f(g(x))>0$	$\bullet^{6} \times$
$x=-3, x=5$	$\bullet^{7} \checkmark$
$-3<x \quad x<5$	

$-3<x \quad x<5$

3(a)
${ }^{1}$ determine the value of the required term

Notes:

1. Do not penalise the inclusion of incorrect units.
2. Accept rounded and unsimplified answers following evidence of correct substitution.

Commonly Observed Responses:

Notes:

3. \bullet^{6} is unavailable for candidates who do not consider the toad in their conclusion.
4. For candidates who only consider the frog numerically award $1 / 5$ for the strategy.

Commonly Observed Responses:

Error with frogs limit - Frog Only	Using Method 3 Toad Only	Using Method 3Toad Only	Using Method 3-Toad Only
$\mathrm{L}_{\mathrm{F}}=34$ - ${ }^{2} \times$	$\bullet^{2} \checkmark$		$\bullet{ }^{2} \checkmark$
$\mathrm{L}_{\mathrm{F}}=\frac{3}{1-\frac{1}{3}} \quad \bullet^{3} \times$	$\bullet^{3} \checkmark$	$\bullet{ }^{2} \checkmark$	$\bullet^{3} \checkmark$
3 •4 $\sqrt{1}$	${ }^{4}$ missing ${ }^{\wedge}$		$\bullet{ }^{4}$ 49.7..rounding
$\mathrm{L}_{\mathrm{F}}=51 \quad \cdot 5 \sqrt{1}$	${ }^{\bullet} 50 \cdot 352 \ldots \checkmark$	${ }^{\bullet} \cdot{ }^{-}$missing ${ }^{\wedge}$	error \times
$51>50 \quad \cdot 6 \sqrt{1}$	$\bullet 50.352>50$	${ }^{6} \quad 50.1>50$	${ }^{5} 50 \cdot 1 \ldots$ ${ }^{6} \quad 50.1>50$
\therefore frog will escape.	so the toad	so the toad escapes.	- $50.1>50$ so the toad escapes.

Toad Conclusions

Limit $=52$
This is greater than the height of the well and so the toad will escape - award \bullet^{6}.
However
Limit $=52$ and so the toad escapes - $\bullet^{6 \wedge}$.

Iterations		
$f_{1}=32$	$t_{1}=13$	
$f_{2}=42.667$	$t_{2}=22.75$	
$f_{3}=46.222$	$t_{3}=30 \cdot 0625$	
$f_{4}=47.407$	$t_{4}=35.547$	
$f_{5}=47.802$	$t_{5}=39.660$	
$f_{6}=47.934$	$t_{6}=42.745$	
$f_{7}=47.978$	$t_{7}=45.059$	
$f_{8}=47.993$	$t_{8}=46.794$	
$f_{9}=47.998$	$t_{9}=48.096$	
	$t_{10}=49.072$	
	$t_{11}=49.804$	
	$t_{12}=50.353$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
4(b)			
$\cdot{ }^{3}$ know to integrate - ${ }^{4}$ interpret limits - ${ }^{5}$ use 'upper - lower' - ${ }^{6}$ integrate - ${ }^{7}$ substitute limits - 8 evaluate area between $f(x)$ and $h(x)$ - 9 state total area		\int_{0}^{4} $\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3\right)-\left(\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$ - ${ }^{6}-\frac{1}{24} x^{3}+\frac{7}{8} x^{2}$ accept unsimplified integral $\text { - } 7\left(-\frac{1}{24} \times 2^{3}+\frac{7}{8} \times 2^{2}\right)-0$ - ${ }^{8} \frac{19}{6}$ - ${ }^{9} \frac{19}{3}$	7
Notes:			
2. If limits $x=0$ and $x=2$ appear ex nihilo award ${ }^{4}$. 4. If a candidate differentiates at \bullet^{6} then \bullet^{6}, \bullet^{7} and \bullet^{8} are not available. However, \bullet^{9} is still available. 5. Candidates who substitute at \bullet^{7}, without attempting to integrate at \bullet^{6}, cannot gain \bullet^{6}, \bullet^{7} or \bullet^{8}. However, \bullet^{9} is still available. 6. Evidence for \bullet^{8} may be implied by \bullet. 7. \bullet^{9} is a strategy mark and should be awarded for correctly multiplying their solution at \bullet^{8}, or for any other valid strategy applied to previous working. 8. For \bullet^{5} both a term containing a variable and the constant term must be dealt with correctly. 9. In cases where \bullet^{5} is not awarded, \bullet^{6} may be gained for integrating an expression of equivalent difficulty i.e. a polynomial of at least degree two. • ${ }^{6}$ is unavailable for the integration of a linear expression. 10. \bullet^{8} must be as a consequence of substituting into a term where the power of x is not equalto 1 or 0 .			

Commonly Observed Responses:	
Candidate A - Valid Strategy Candidates who use the strategy: Total Area $=$ Area A + Area B Then mark as follows: ${ }^{*}$ Mark Area A for \bullet^{3} to \bullet^{8} then mark Area B for \bullet^{3} to \bullet^{8} and award the higher of the two. - 9 is available for correctly adding two equal areas.	Candidate B - Invalid Strategy For example, candidates who integrate each of the four functions separately within an invalid strategy $\bullet^{3} \checkmark$ Gain • ${ }^{4}$ if limits correct on $\begin{gathered} \int f(x) \text { and } \int h(x) \\ \text { or } \\ \int g(x) \text { and } \int k(x) \end{gathered}$ - ${ }^{5}$ is unavailable Gain \bullet^{6} for calculating either $\begin{gathered} \int f(x) \text { or } \int g(x) \\ \text { and } \\ \int h(x) \text { or } \int k(x) \end{gathered}$ Gain \bullet^{7} for correctly substituting at least twice Gain \bullet^{8} for evaluating at least two integrals correctly - ${ }^{9}$ is unavailable
$\begin{aligned} & \text { Candidate C } \\ & \int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x \\ & \int_{0 \sim \sim \sim \sim \sim}^{2}\left(-\frac{1}{8} x^{2}-\frac{11}{4} x\right) d x \quad \bullet 5 \\ & \frac{-1}{24} x^{3}-\frac{11}{8} x^{2} \quad \bullet 6 \times \end{aligned}$	Candidate D $\begin{aligned} & \int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x \\ & \int_{0}^{2}\left(-\frac{1}{8} x^{2}-\frac{11}{4} x+6\right) d x \quad \bullet^{5} \times \\ & -\frac{1}{24} x^{3}-\frac{11}{8} x^{2}+6 x \quad \bullet \sqrt{1} \end{aligned}$
Candidate E $\int \ldots=-\frac{1}{3}$ cannot be negative so $=\frac{1}{3} \cdot{ }^{8} \times$ however, $=-\frac{1}{3}$ so Area $=\frac{1}{3}$	Candidate F $\begin{aligned} & \int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\underset{\sim}{-\frac{3}{8}} x_{\sim}^{2}-\frac{9}{4} x+3\right) d x \\ & \int_{0}^{2}\left(-\frac{1}{8} x^{2}+\frac{7}{4} x\right) d x \quad \bullet^{5} \checkmark \\ & -\frac{1}{24} x^{3}+\frac{7}{8} x^{2} \quad \bullet^{6} \checkmark \end{aligned}$

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			
$\bullet{ }^{1}$ state centre of C_{1}		-1 ${ }^{1}(-3,-5)$	
$\bullet{ }^{2}$ state radius of C_{1}		$\bullet{ }^{2} 5$	
- ${ }^{3}$ calculate distance between centres of C_{1} and C_{2}		$\bullet^{3} 20$	
$\bullet{ }^{4}$ calculate radius of C_{2}		$\bullet{ }^{4} 15$	4
Notes:			
	warded radius of C_{2} must be didates who arrive at the rategy. $\mathrm{ce}_{\mathrm{clc} 2}-\mathrm{r}_{\mathrm{cl} 1}$ but only if the an	greater than the radius of C_{1}. orrect solution by finding th wer obtained is greater than	of contact
Commonl	Responses:		

Question \quad Generic Scheme	Illustrative Scheme \quad Max Mark
5(b)	
$\bullet{ }^{5}$ find ratio in which centre of C_{3} divides line joining centres of C_{1} and C_{2} \bullet^{6} determine centre of C_{3} - ${ }^{7}$ calculate radius of C_{3} \bullet^{8} state equation of C_{3}	- ${ }^{5} 3: 1$ - ${ }^{6}(6,7)$ - ${ }^{7} r=20$ (answer must be consistent with distance between centres) - ${ }^{8}(x-6)^{2}+(y-7)^{2}=400$
Notes:	
4. For ${ }^{5}$ accept ratios $\pm 3: \pm 1, \pm 1: \pm 3, \mp 3: \pm 1, \mp 1$: 5. \bullet^{7} is for $\mathrm{r}_{\mathrm{c} 2}+\mathrm{r}_{\mathrm{c} 1}$. 6. Where candidates arrive at an incorrect centre However \bullet^{8} is not available if either centre or r 7. Do not accept 20^{2} for \bullet^{8}. 8. For candidates finding the centre by 'stepping for \bullet^{5} and \bullet^{6} : Correct 'follow through' using the ratio $1: 3 \longrightarrow(0,-1)$, $(-3,-5)$	± 3 (or the appearance of $\frac{3}{4}$). or radius from working then \bullet^{8} is available. radius appear ex nihilo (see note 5). out' the following is the minimum evidence $(9,11)$
Commonly Observed Responses:	
Candidate A using the mid-point of centres: centre $\mathrm{C}_{3}=(3,3)$ radius of $\mathrm{C}_{3}=20$ $(x-3)^{2}+(y-3)^{2}=400$	
Candidate C - touches C_{1} internally only $\cdot{ }^{5} x$ - ${ }^{6}$ centre $\mathrm{C}_{3}=(3,3) \times$ - ${ }^{7}$ radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{2}=15 \sqrt{1}$ $.8(x-3)^{2}+(y-3)^{2}=225$	Candidate D - touches C_{2} internally only ${ }^{5} \times$ - ${ }^{6}$ centre $\mathrm{C}_{3}=(3,3) \times$ - ${ }^{7}$ radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{1}=5$ \square $.8(x-3)^{2}+(y-3)^{2}=25$ \square
Candidate E - centre C_{3} collinear with $\mathrm{C}_{1}, \mathrm{C}_{2}$ ${ }^{5} \times$ - ${ }^{6}$ e.g. centre $\mathrm{C}_{3}=(21,27) \times$ - ${ }^{7}$ radius of $\mathrm{C}_{3}=45$ (touch C_{1} internally only) $\sqrt{ }$ - $8(x-21)^{2}+(y-27)^{2}=2025$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
8.			
use compound angle formula - ${ }^{2}$ compare coefficients - ${ }^{3}$ process for k - ${ }^{4}$ process for a - ${ }^{5}$ equates expression for h to 100 - ${ }^{6}$ write in standard format and attempt to solve -7 solve equation for $1.5 t$ \bullet process solutions for t		- $k \sin 1 \cdot 5 t \cos a-k \cos 1 \cdot 5 t \sin a$ $\bullet^{2} k \cos a=36, k \sin a=15$ stated explicitly $\bullet^{3} k=39$ - $4 a=0.39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$ - 5 $\begin{aligned} & 39 \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)+65=100 \\ & .6 \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)=\frac{35}{39} \\ & \quad \Rightarrow 1 \cdot 5 t-0 \cdot 39479 \ldots=\sin ^{-1}\left(\frac{35}{39}\right) \end{aligned}$ ${ }^{-7}$ - $\quad t=1.006$	8

1. Treat $k \sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. $39 \sin 1 \cdot 5 t \cos a-39 \cos 1 \cdot 5 t \sin a$ or $39(\sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a)$ is acceptable for \bullet^{1} and ${ }^{3}$.
3. Accept $k \cos a=36$ and $-k \sin a=-15$ for \bullet^{2}.
4. \bullet^{2} is not available for $k \cos 1 \cdot 5 t=36$ and $k \sin 1 \cdot 5 t=15$, however, \bullet^{4} is still available.
5. \bullet^{3} is only available for a single value of $k, k>0$.
6. \bullet^{4} is only available for a single value of a.
7. The angle at ${ }^{4}$ must be consistent with the equations at $\bullet{ }^{2}$ even when this leads to an angle outwith the required range.
8. Candidates who identify and use any form of the wave equation may gain \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \sin (1 \cdot 5 t-a)$.
9. Candidates who work consistently in degrees cannot gain \bullet^{8}.
10. Do not penalise additional solutions at \bullet^{8}.
11. On this occasion accept any answers which round to $1 \cdot 0$ and 1.6 (2 significant figures required).

Commonly Observed Responses:		
Response 1: Missing information in working.		
$$	Candidate B $\cos a=36$ $\sin a=15$ $\tan a=\frac{15}{36}$ $a=0.39479 \ldots$ rad or $22 \cdot \cdot^{\circ} \times$ Does not satisfy equations at \bullet^{2}	
Response 2: Correct expansion of $k \sin (x+a)^{\text { }}$ and possible errors for \bullet^{2} and \bullet^{4}		
$$	Candidate E $k \cos a=15 \quad \bullet^{2} \times$ $k \sin a=36 \quad$ $\tan a=\frac{36}{15} \quad \bullet^{4} \sqrt{ }$ $a=1.176 \ldots \mathrm{rad}$ or $67 \cdot 4^{\circ}$	$\begin{aligned} & \text { Candidate F } \\ & k \cos a=36 \\ & k \sin a=-15 \\ & \tan a=\frac{-15}{36} \\ & a=5 \cdot 888 \ldots \mathrm{rad} \text { or } 337 \cdot 4^{\circ} \end{aligned}$
Response 3: Labelling incorrect, $\sin (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}$ from formula list.		
Candidate G $k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B}$ $k \cos a=36$ $k \sin a=15$ $\tan a=\frac{15}{36}$ $a=0.39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$	Candidate H $k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B}$ $k \cos 1 \cdot 5 t=36 \quad \bullet^{1} \times$ $k \sin 1 \cdot 5 t=15 \quad \bullet^{2} \times$ $\tan 1 \cdot 5 t=\frac{15}{36} \quad \bullet^{4} \sqrt{ } 1$ $1 \cdot 5 t=0.39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$	Candidate I $\begin{array}{lc}k \sin A \cos B & -k \cos A \sin B \\ k \cos \mathrm{~B}=36 & \bullet^{1} \times \\ k \sin \mathrm{~B}=15 & \bullet^{2} \sqrt{ } 1 \\ \tan \mathrm{~B}=\frac{15}{36} & \bullet \sqrt{ } \\ \mathrm{~B}=0.39479 \ldots \mathrm{rad} \text { or } 22 \cdot 6^{\circ}\end{array}$
Candidate J $\begin{aligned} & 39 \sin (1 \cdot 5 t-0 \cdot 395)=100 \\ & \sin (1 \cdot 5 t-0 \cdot 395)=\frac{100}{39} \\ & 1 \cdot 5 t-0 \cdot 395=\sin ^{-1} \frac{100}{39} \end{aligned}$. Candidate K $.{ }^{5} \times$ $39 \sin (1 \cdot 5 t-0$ $1 \cdot 5 t-0 \cdot 395=$ $\qquad$$\bullet$ \bullet \bullet .8 \times	$\begin{array}{ll} 395)=100 & \bullet^{6} x \\ & \bullet^{7} x \\ \operatorname{in}^{-1} \frac{39}{100} & \bullet^{8} x \end{array}$

