2013 Mathematics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA’s NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre’s responsibility to obtain the necessary copyright clearance. SQA’s NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
General Comments

These marking instructions are for use with the 2013 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2. Award one mark for each •. There are no half marks.

3. The mark awarded for each part of a question should be entered in the outer right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, as a whole number, should be written.

4. Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, i.e. a completely empty space, then NR should be written in the outer margin.

5. Every page of a candidate’s script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.

6. Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (↓), in the margin, at the earlier stages.

7. Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

8. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
9 Marking Symbols
No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.

✓ A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

___x___ At the point where an error occurs, the error should be underlined and a cross used to indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

✓ A cross-tick should be used to indicate “correct” working where a mark is awarded as a result of follow through from an error.

✓ A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been eased.

~~~ A tilde should be used to indicate a minor error which is not being penalised, e.g. bad form.

~~~ This should be used where a candidate is given the benefit of the doubt.

^ A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and essential for the later stages of SQA procedures.
The examples below illustrate the use of the marking symbols .

Example 1

\[y = x^3 - 6x^2 \]

\[\frac{dy}{dx} = 3x^2 - 12 \]

\[3x^2 - 12 = 0 \]

\[x = 2 \]

\[y = -16 \]

\[\bullet 1 \checkmark \]

\[\bullet 2 \times \]

\[\bullet 3 \times \]

\[\bullet 4 \checkmark \]

\[\bullet 5 \checkmark \]

Example 2

A(4,4,0), B(2,2,6), C(2,2,0)

\[\overline{AB} = b + a = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \]

\[\overline{AC} = \begin{bmatrix} 6 \\ 6 \\ 0 \end{bmatrix} \]

\[\times \bullet 1 \]

\[\times \bullet 2 \text{ (repeated error)} \]

Example 3

\[3\sin x - 5\cos x \]

\[k \sin x \cos a - \cos x \sin a \checkmark \bullet 1 \]

\[k \cos a = 3, \ k \sin a = 5 \checkmark \bullet 2 \]

Example 4

\[\begin{bmatrix} 4 & 1 & -5 & 2 & 8 \checkmark \bullet 1 \\ 4 & -4 & -8 \checkmark \bullet 3 \\ 1 & 1 & -2 & 0 \end{bmatrix} \]

Since the remainder is 0, \(x - 4 \) must be a factor. \(\checkmark \bullet 3 \)

\((x^2 - x - 2) \checkmark \bullet 4 \)

\((x - 4)(x + 1)(x - 2) \checkmark \bullet 5 \)

\(x = 4 \) or \(x = -1 \) or \(x = 2 \checkmark \bullet 6 \)
In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.

Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

\[
\begin{align*}
x^3 + 5x + 7 &= 9x + 4 \\
x - 4x + 3 &= 0 \\
x &= 1
\end{align*}
\]

This is a transcription error and so the mark is not awarded.

Eased as no longer a solution of a quadratic equation.

Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.

Cross marking
Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

Illustrative Scheme:

Cross marked:

Markers should choose whichever method benefits the candidate, but not a combination of both.

In final answers, numerical values should be simplified as far as possible.

Examples:

\[
\begin{align*}
\frac{15}{12} &\quad \text{should be simplified to } \frac{5}{4} \quad \text{or } 1 \frac{1}{4} \\
\frac{43}{7} &\quad \text{should be simplified to } 43 \\
\frac{15}{3} &\quad \text{should be simplified to } 50 \\
\sqrt{64} &\quad \text{must be simplified to } 8
\end{align*}
\]

The square root of perfect squares up to and including 100 must be known.

Regularly occurring responses (ROR) are shown in the marking instructions to help mark common and/or non-routine solutions. RORs may also be used as a guide in marking similar non-routine candidate responses.

Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form;
- Repeated error within a question, but not between questions or papers.
16 In any ‘Show that . . .’ question, where the candidate has to arrive at a formula, the last mark of that part is not available as a follow through from a previous error.

17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate’s response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

18 In the exceptional circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

19 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

20 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

<table>
<thead>
<tr>
<th>Strategy 1 attempt 1 is worth 3 marks</th>
<th>Strategy 2 attempt 1 is worth 1 mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy 1 attempt 2 is worth 4 marks</td>
<td>Strategy 2 attempt 2 is worth 5 marks</td>
</tr>
<tr>
<td>From the attempts using strategy 1, the resultant mark would be 3.</td>
<td>From the attempts using strategy 2, the resultant mark would be 1.</td>
</tr>
</tbody>
</table>

In this case, award 3 marks.

21 It is of great importance that the utmost care should be exercised in totalling the marks.
A tried and tested procedure is as follows:

Step 1 Manually calculate the total from the candidate’s script.
Step 2 Check this total using the grid issued with these marking instructions.
Step 3 In SCORIS, enter the marks and obtain a total, which should now be compared to the manual total.

This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate’s marks.

22 The candidate’s script for Paper 2 should be placed inside the script for Paper 1, and the candidate’s total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.

23 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th>Summary</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
</tbody>
</table>
Paper 1 - Section B

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
</table>
| 21 | Express \(2x^2 + 12x + 1\) in the form \(a(x + b)^2 + c\). | Method 1
- \(1^\text{ ss}\) identify common factor
- \(2^\text{ ss}\) complete the square
- \(3^\text{ pd}\) process for \(c\) | \(1^\text{ } 2(x^2 + 6x \ldots \text{ stated or implied by}\)
- \(2^\text{ } 2(x + 3)^2 \ldots\)
- \(3^\text{ } 2(x + 3)^2 - 17\) |

Method 2
- \(1^\text{ } \text{ax}^2 + 2abx + ab^2 + c\)
- \(2^\text{ } a = 2 \quad 2ab = 12 \quad ab^2 + c = 1\)
- \(3^\text{ } 2(x + 3)^2 - 17\)

Notes:
1. Correct answer without working gains full credit.

Regularly Occurring Responses:

Candidate A
\[
\begin{align*}
2(x^2 + 6x + \frac{9}{2}) & = (x + 3)^2 \quad \checkmark \\
2(x^2 + 6x + 9 - 9 + \frac{9}{2}) & = (x + 3)^2 - \frac{9}{2} \quad \checkmark \\
2(x + 3)^2 - 8 & \times
\end{align*}
\]

Candidate B
\[
\begin{align*}
2x^2 + 12x + 1 & = (x + 6)^2 - 36 + 1 \quad \times \quad \times \\
& = (x + 6)^2 - 35 \quad \checkmark \\
& \checkmark \quad \times
\end{align*}
\]

Candidate C
\[
\begin{align*}
a(x + b)^2 + c & = ax^2 + 2abx + ab^2 + c \quad \checkmark \\
a & = 2 \quad 2ab & = 12 \quad ab^2 & + c = 1 \quad \checkmark \\
b & = 3 \quad c & = -17 \quad \checkmark
\end{align*}
\]

Candidate D
\[
\begin{align*}
ax^2 + 2abx + ab^2 + c & \quad \checkmark \\
a & = 2 \quad 2ab & = 12 \quad ab^2 & + c = 1 \quad \checkmark \\
b & = 3 \quad c & = -17 \quad \checkmark
\end{align*}
\]

Candidate E
\[
\begin{align*}
ax^2 + 2abx + ab^2 + c & \quad \checkmark \\
a & = 2 \quad 2ab & = 12 \quad b^2 & + c = 1 \quad \times \\
a & = 2 \quad b & = 3 \quad c & = -8 \quad \checkmark \\
2(x + 3)^2 - 8 & \checkmark
\end{align*}
\]

Candidate F
\[
\begin{align*}
2(x^2 + 12x) + 1 & \quad \times
\end{align*}
\]

\(\checkmark\) awarded as all working relates to completed square form

\(\times\) is lost as no reference is made to completed square form
A circle C_1 has equation $x^2 + y^2 + 2x + 4y - 27 = 0$.

Part a
Write down the centre and calculate the radius of C_1.

- **1** ic state centre
- **2** pd find radius

<table>
<thead>
<tr>
<th></th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(-1, -2)$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$\sqrt{32}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Do not penalise candidates who use -1 and -2 for g and f when calculating the radius. However, candidates who use -1 and 2 or 1 and -2 lose.
2. $\sqrt{32}$ need not be simplified.

Part b
The point P(3, 2) lies on the circle C_1.

Find the equation of the tangent at P.

- **3** ss find m radius
- **4** ic state m tangent
- **5** ic state equation of tangent

<table>
<thead>
<tr>
<th></th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$y - 2 = -1(x - 3)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
3. $\cdot 5$ is only available as a result of using a perpendicular gradient.

Regularly Occurring Responses:

Candidate A

$m_{\text{radius}} = 1$

- $\cdot 3 \checkmark$

Equation of tangent is $y - 2 = 1(x - 3)$

Candidate B

$m_{\text{radius}} = 1$

- $\cdot 3 \checkmark$

$m_1m_2 = -1$

so $m_2 = 1$

$y - 2 = 1(x - 3)$
A second circle C_2 has centre $(10, -1)$. The radius of C_2 is half of the radius of C_1. Show that the equation of C_2 is $x^2 + y^2 - 20x + 2y + 93 = 0$.

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 c</td>
<td>A second circle C_2 has centre $(10, -1)$. The radius of C_2 is half of the radius of C_1. Show that the equation of C_2 is $x^2 + y^2 - 20x + 2y + 93 = 0$.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **6 pd** find radius
- **7 ic** state equation of circle
- **8 pd** expand and complete

**Stated or implied by **

- **6 $\sqrt{8}$**
- **7** $(x - 10)^2 + (y + 1)^2 = (\sqrt{8})^2$
- **8** $x^2 - 20x + 100 + y^2 + 2y + 1 = 8$

Accept

$2g = -20, \ 2f = 2$
$g = -10, f = 1$
$g = -10, f = 1$
$2g = -20, \ 2f = 2$

Centre $(10, -1)$

$\sqrt{g^2 + f^2} = \sqrt{8}$

so radius of $C_2 = \frac{1}{2}$ of radius of C_1

- **6** \checkmark
- **7** \checkmark
- **8** \checkmark

Regularly Occurring Responses:

Candidate C

C_2 centre is $(10, -1)$
$g = -10, \ f = 1$
$2g = -20, \ 2f = 2$
$x^2 + y^2 - 20x + 2y + \ldots$

- **6 \checkmark**
- **7** \times
- **8 \times**

Candidate D

$x^2 + y^2 - 20x + 2y + 93 = 0$
$2g = -20, \ 2f = 2$
$centre (10, -1)$
$radius = \sqrt{(-10)^2 + 1^2 - 93} = \sqrt{8}$
$\sqrt{32} = \sqrt{4 \times 8} = 2\sqrt{8}$

so radius of $C_2 = \frac{1}{2}$ of radius of C_1

- **6 \checkmark**
- **7 \checkmark**
- **8 \checkmark**

Candidate F

$x^2 + y^2 - 20x + 2y + 93$
$2g = -20, \ 2f = 2$
$centre (10, -1)$
$radius = \sqrt{(-10)^2 + 1^2 - 93} = \sqrt{8}$

which is half of $\sqrt{32}$

- **6 \checkmark**
- **7 \checkmark**
- **8 \checkmark**

Candidate E

$x^2 + y^2 - 20x + 2y + 93 = 0$
$2g = -20, \ 2f = 2$
$centre (10, -1)$
$radius = \sqrt{(-10)^2 + 1^2 - 93}$
$= \sqrt{8}$
$\sqrt{32} = 4\sqrt{8}$

- **6 \checkmark**

Candidate G

$x^2 + y^2 - 20x + 2y + 93 = 0$
$2g = -20, \ 2f = 2$
$centre (10, -1)$
$radius = \sqrt{(-10)^2 + 1^2 - 93}$
$= \sqrt{8}$

- **6 \checkmark**
- **7 \checkmark**
- **8 \checkmark**

Page 9
Show that the tangent found in part (b) is also a tangent to circle C₂.

Method 1

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 ss</td>
<td>Substitute (y = 5 - x) (or (x = 5 - y))</td>
</tr>
<tr>
<td>10 pd</td>
<td>Express in standard quadratic form</td>
</tr>
<tr>
<td>11 ic</td>
<td>Start proof</td>
</tr>
<tr>
<td>12 ic</td>
<td>Complete proof</td>
</tr>
</tbody>
</table>

Substituting for \(y \):

\[
x^2 + (5 - x)^2 - 20x + 2(5 - x) + 93
\]

\[
2x^2 - 32x + 128 = 0
\]

\[
2(x - 8)^2 = 0
\]

\[
(-32)^2 - 4 \times 2 \times 128 = 0
\]

\[
b^2 - 4ac = 0
\]

\[
\Rightarrow \text{tangent}
\]

Notes:

4. \(= 0 \) must appear at \(9 \) or \(10 \) stage to gain \(10 \).

5. Candidates who arrive at a quadratic equation which does not have equal roots cannot gain \(12 \) as follow through. (See General Comments Note 16).

6. Where candidates do not arrive at a quadratic equation in Method 1, marks \(10, 11 \) and \(12 \) are not available.

7. Acceptable communication for \(12 \), ‘only one answer so implies tangent’, ‘discriminant is 0 so tangent’, ‘\(x = 8 \) twice so tangent’, or equivalent relating to tangency.

Method 2

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 ss</td>
<td>Uses perpendicular gradients</td>
</tr>
<tr>
<td>10 pd</td>
<td>Find equation of radius</td>
</tr>
<tr>
<td>11 ic</td>
<td>Starts proof</td>
</tr>
<tr>
<td>12 ic</td>
<td>Completes proof</td>
</tr>
</tbody>
</table>

Substituting for \(x \):

\[
(5 - y)^2 + y^2 - 20(5 - y) + 2y + 93 = 0
\]

\[
2y^2 + 12y + 18 = 0
\]

\[
2(y + 3)^2 = 0
\]

\[
12^2 - 4 \times 2 \times 18
\]

\[
b^2 - 4ac = 0
\]

\[
\Rightarrow \text{tangent}
\]

\[
\Rightarrow \text{tangent}
\]

Notes:

4. \(= 0 \) must appear at \(9 \) or \(10 \) stage to gain \(10 \).

5. Candidates who arrive at a quadratic equation which does not have equal roots cannot gain \(12 \) as follow through. (See General Comments Note 16).

6. Where candidates do not arrive at a quadratic equation in Method 1, marks \(10, 11 \) and \(12 \) are not available.

7. Acceptable communication for \(12 \), ‘only one answer so implies tangent’, ‘discriminant is 0 so tangent’, ‘\(x = 8 \) twice so tangent’, or equivalent relating to tangency.
Question 23 a

The expression \(\sqrt{3} \sin x^\circ - \cos x^\circ\) can be written in the form \(k \sin(x - a)^\circ\), where \(k > 0\) and \(0 < a < 360\).

Calculate the values of \(k\) and \(a\).

| 1 | ss | use compound angle formula | 1 | stated explicitly |
| 2 | ic | compare coefficients | 2 | stated explicitly |
| 3 | pd | process for \(k\) | 3 | 2 (do not accept \(\sqrt{4}\)) |
| 4 | pd | process for \(a\) | 4 | 30 |

Max Mark: 4

Notes:

1. Treat \(k \sin x^\circ \cos a^\circ - \cos x^\circ \sin a^\circ\) as bad form only if the equations at the 1 stage both contain \(k\).
2. \(2 \sin x^\circ \cos a^\circ - 2 \cos x^\circ \sin a^\circ\) or \(2(\sin x^\circ \cos a^\circ - \cos x^\circ \sin a^\circ)\) is acceptable for 1 and 3.
3. Accept \(k \cos a^\circ = \sqrt{3}\) and \(-k \sin a^\circ = -1\) for 2.
4. 1 is not available for \(k \cos x^\circ = \sqrt{3}\) and \(k \sin x^\circ = 1\), however, 1 is still available.
5. 3 is only available for a single value of \(k\), \(k > 0\).
6. 1 is only available for a single value of \(a\) expressed in degrees.
7. Candidates who identify and use any form of the wave equation may gain 1, 2 and 3, however, 4 is only available if the value of \(a\) is interpreted for the form \(k \sin(x - a)^\circ\).
8. Do not penalise omission of degree sign at 1 or 2.

Regularly Occurring Responses:

Candidate A

- \(2 \cos a = \sqrt{3}\)
- \(-2 \sin a = -1\)
- \(\tan a = \frac{1}{\sqrt{3}}\)
- \(a = 30\)°

Response 1: Missing information in working.

Candidate B

- \(\cos a = \sqrt{3}\)
- \(\sin a = 1\)
- \(\tan a = \frac{1}{\sqrt{3}}\)
- \(a = 30\)°

Response 2: Labelling incorrect, \(\sin(A - B) = \sin A \cos B - \cos A \sin B\) from formula list.

Candidate D

- \(k \sin A \cos B - k \cos A \sin B\) 1
- \(k \cos a = \sqrt{3}\)
- \(k \sin a = 1\)
- \(\tan a = \frac{1}{\sqrt{3}}\)
- \(a = 30\)°

Candidate E

- \(k \sin a \cos B - k \cos A \sin B\) 1
- \(k \cos x = \sqrt{3}\)
- \(k \sin x = 1\)
- \(\tan x = \frac{1}{\sqrt{3}}\)
- \(x = 30\)°

Candidate F

- \(k \sin A \cos B - k \cos A \sin B\) 4
- \(k \cos B = \sqrt{3}\)
- \(k \sin B = 1\)
- \(\tan B = \frac{1}{\sqrt{3}}\)
- \(B = 30\)°
<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 b</td>
<td>Determine the maximum value of $4 + 5 \cos x^\circ - 5 \sqrt{3} \sin x^\circ$, where $0 \leq x < 360$.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>• ic</td>
<td>interpret expression</td>
<td>• ic</td>
<td></td>
</tr>
<tr>
<td>• pd</td>
<td>state maximum</td>
<td>• pd</td>
<td>4 – 5 × 2 \sin (x – 30)^\circ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• pd</td>
</tr>
</tbody>
</table>

Notes:

9. A solution using calculus gains no marks unless angles are converted to radian measure before differentiating.

10. ‘Maximum = 14’ with no working gains no marks.

11. • ic is awarded for demonstrating a clear link between the expression in (b) and the wave in part (a).

12. Candidates who start afresh, and use any form of the wave function to arrive at $4 \pm 10 \cos (\ldots)$ or $4 \pm 10 \sin (\ldots)$ correctly, can gain both • ic and • pd.

13. • pd is only available if, at the • ic stage, the candidate’s answer in (a) is multiplied by an integer k, $k \neq \pm 1$.

14. Candidates who equate the given expression to 0 and attempt to solve gain 0 marks.

Regularly Occurring Responses:

<table>
<thead>
<tr>
<th>Candidate J</th>
<th></th>
<th>Candidate K</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 - 5 \times \ 2\sin(x - 60)^\circ$</td>
<td>• ic ✓</td>
<td>$4 + 2\sin(x - 30)^\circ$</td>
<td>• ic x</td>
</tr>
<tr>
<td>Max = 14</td>
<td>• pd ✓</td>
<td>Max 2 + 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max = 6</td>
<td>• pd ✓</td>
</tr>
</tbody>
</table>
Show that the points A(–7, –8, 1), T(3, 2, 5) and B(18, 17, 11) are collinear.

Find the ratio in which T divides AB.

• use vector approach

• compare two vectors

• complete proof

• state ratio

Notes:
1. Any appropriate combination of vectors is acceptable.
2. • can only be awarded if a candidate has stated, common point, parallel (common direction) and collinear.
3. Treat written as (10, 10, 4) as bad form.
5. • requires evidence of vectors being parallel, simply stating parallel is insufficient.

Regularly Occurring Responses:

Candidate A

\[\overrightarrow{AT} = 2 \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix} \quad \overrightarrow{TB} = 3 \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix} \]

Candidate B

\[\overrightarrow{AT} = \frac{10}{4} \quad \overrightarrow{TB} = \frac{15}{6} \]

Candidate C

\[\overrightarrow{AT} = \frac{10}{4} \quad \overrightarrow{TB} = \frac{15}{6} \]

Candidate D

\[\overrightarrow{AT} = \frac{10}{4} \quad \overrightarrow{TB} = \frac{15}{6} \]

\[\overrightarrow{TB} = \frac{2}{3} \overrightarrow{AT} \]

TB and AT are parallel. T is a common point so A, T and B are collinear.
The point C lies on the x-axis. If TB and TC are perpendicular, find the coordinates of C.

Method 1
- **ic** interpret C
- **pd** use vector approach
- **ss** know to use scalar product equal to 0
- **pd** start to solve
- **pd** complete

Method 2
- **ic** interpret C
- **pd** use vector approach
- **ss** know to use Pythagoras and calculate $|\overrightarrow{TC}|$ or $|\overrightarrow{TB}|$
- **pd** calculate the other two lengths
- **pd** complete

Notes:
6. In Method 1, $= 0$ must appear at * or * for * to be available.
7. In Method 1, candidates who use $\overrightarrow{TB}.\overrightarrow{TC} = -1$ can gain a maximum of 4 marks.
8. C must appear in coordinate form at * or * for * to be awarded.
9. If C has more than one non-zero coordinate * is not available.
10. * is only available for expressions with an unknown.

Regularly Occurring Responses:

<table>
<thead>
<tr>
<th>Candidate</th>
<th>C = (c, 0, 0)</th>
<th>$15(c - 3) + 15 \times (-2) + 6 \times (-5) = 0$</th>
<th>$c = 7$</th>
<th>Gains full marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate E</td>
<td>$\overrightarrow{TC} = (\frac{c - 3}{-2}, \frac{-5}{-5})$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Candidate F</td>
<td>$\overrightarrow{BC} = \sqrt{(c - 18)^2 + 289 + 121}$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Candidate G</td>
<td>$\overrightarrow{TC} = c - \left(\frac{3}{2}, \frac{-5}{5}\right)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{TB}.\overrightarrow{TC} = 15(c - 3) + 15(c - 2) + 6(c - 5)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>It is not clear at * what is meant by ‘c’ so * cannot be awarded as follow through.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>However</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{TC} = \left(\frac{x - 3}{y - 2}, \frac{y - 2}{z - 5}\right)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Question 1

The first three terms of a sequence are 4, 7 and 16.

The sequence is generated by the recurrence relation
\[u_{n+1} = mu_n + c, \text{ with } u_1 = 4. \]

Find the values of \(m \) and \(c \).

\[\begin{align*}
\bullet^1 & \text{ interpret recurrence relation} \\
\bullet^2 & \text{ interpret recurrence relation} \\
\bullet^3 & \text{ know to use simultaneous equation} \\
\bullet^4 & \text{ find } m \text{ and } c
\end{align*} \]

\[\begin{align*}
\bullet^1 & \quad 7 = 4m + c \\
\bullet^2 & \quad 16 = 7m + c \\
\bullet^3 & \quad 7m + c = 16 \\
\bullet^4 & \quad 4m + c = 7 \quad \text{leading to}
\end{align*} \]

\[\begin{align*}
\bullet^1 & \quad m = 3, \; c = -5
\end{align*} \]

Notes:

1. Treat equations like \(7 = m4 + c \) or \(7 = m(4) + c \) as bad form.

Regularly Occurring Responses:

<table>
<thead>
<tr>
<th>Candidate A</th>
<th>Candidate B</th>
<th>Candidate C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No working</td>
<td>Only one equation</td>
<td>Partial verification</td>
</tr>
<tr>
<td>(m = 3) and (c = -5) or (u_{n+1} = 3u_n - 5)</td>
<td>(7 = 4m + c) (m = 3) and (c = -5)</td>
<td>(m = 3) and (c = -5)</td>
</tr>
<tr>
<td>1 mark out of 4</td>
<td>2 marks out of 4</td>
<td>2 marks out of 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate D</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>by verification</td>
<td></td>
</tr>
<tr>
<td>(m = 3) and (c = -5) (3 \times 4 - 5 = 7) and (3 \times 7 - 5 = 16)</td>
<td>(7 = 4m + c) (16 = 7m + c) (m = 3) and (c = -5)</td>
</tr>
<tr>
<td>3 marks out of 4</td>
<td>4 marks out of 4</td>
</tr>
</tbody>
</table>
The diagram shows rectangle PQRS with P(7, 2) and Q(5, 6).

Find the equation of QR.

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a</td>
<td>The diagram shows rectangle PQRS with P(7, 2) and Q(5, 6).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Find the equation of QR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>![Diagram of rectangle PQRS with vertices P(7, 2) and Q(5, 6)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1** ss know to find gradient
- **2** ic use perpendicular gradient
- **3** ic state equation of line

Notes:
1. **3** is only available as a consequence of using a perpendicular gradient and the point Q.
2. \(m = \frac{1}{2} \) appearing ex nihilo leading to the correct equation for QR gains 0 marks.

2 b The line from P with the equation \(x + 3y = 13 \) intersects QR at T.

Find the coordinates of T.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The line from P with the equation (x + 3y = 13) intersects QR at T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>![Diagram of line from P(7, 2) to Q(5, 6) with point T]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **4** ss prepare to solve
- **5** pd solve for one variable
- **6** pd solve for second variable

Notes:
3. Subsequent to making an error in rearranging the equation of QR, **4** can still be awarded but **5** is lost.
4. Stepping out from P to Q and then the reverse from Q is not a valid strategy for obtaining T.
5. **4**, **5** and **6** are not available to candidates who: (i) equate zeroes, (ii) give answers only without working.

Regularly Occurring Responses:

Candidate A

\[y - 6 = \frac{1}{2}(x - 5) \] leading to

\[2y - x = -17 \]

\[x + 3y = 13 \]

\[5y = -4 \]

\[y = -\frac{4}{5} \]

\[x = 15 \frac{2}{5} \]
Given that T is the midpoint of QR, find the coordinates of R and S.

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c</td>
<td>Given that T is the midpoint of QR, find the coordinates of R and S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 7 ss</td>
<td>valid method eg vectors or stepping out or mid-point formula</td>
<td>• 7 eg (\overrightarrow{QT} = \begin{pmatrix} -4 \ -2 \end{pmatrix})</td>
<td>3</td>
</tr>
<tr>
<td>• 8 ss</td>
<td>know how to find R</td>
<td>• 8 R ((-3, 2))</td>
<td></td>
</tr>
<tr>
<td>• 9 ss</td>
<td>know how to find S using (\overrightarrow{RS} = \overrightarrow{QP} = \begin{pmatrix} 2 \ -4 \end{pmatrix})</td>
<td>• 9 S ((-1, -2))</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

6. Any strategy that relies upon the rectangle being composed of two congruent squares can only be given credit if this fact has been justified. Candidates who have already been penalised in 2(b) for making this assumption can gain full credit in (c).

7. If R\((-3,2)\) and S\((-1, -2)\) appear without working then • 7, • 8 and • 9 are not available.

Regularly Occurring Responses:

Response 1: Examples of evidence for stepping out.

-4 2
(5,6) (1,4) (-3,2)
\(\quad \begin{array}{l}
\quad 4 \\
\quad 2 \\
\quad 4 \\
\quad 2 \\
\quad -4 \\
\quad 2 \\
\quad -4 \\
\quad 2 \\
\quad -4 \\
\quad 2 \\
\quad 6 \\
\quad -2 \\
\quad 4 \\
\quad -2 \\
\quad 2 \\
\end{array}
\)

Response 2: Examples of insufficient evidence for stepping out.

(5,6) \(\rightarrow \) (1,4) \(\rightarrow \) (-3,2)

Candidate B

\(\begin{array}{l}
(1, 4) \\
\end{array} \)
\(\begin{array}{l}
\frac{a+5}{2} = 1 \\
a = -3 \\
\end{array} \)
\(\begin{array}{l}
\frac{b+6}{2} = 4 \\
b = 2 \\
\end{array} \)
Given that \((x - 1)\) is a factor of \(x^3 + 3x^2 + x - 5\), factorise this cubic fully.

- **1** ss know to use \(x = 1\) in synthetic division
- **2** pd complete evaluation
- **3** ic state quadratic factor
- **4** ic valid reason for irreducible quadratic

Notes:
1. Accept any of the following for **4**
 a) \(b^2 - 4ac = 16 - 20 < 0\), so does not factorise.
 b) \(b^2 - 4ac = 16 - 4 \times 5 < 0\), so does not factorise.
 c) \(16 - 4 \times 5 < 0\), so does not factorise.

2. Do **not** accept any of the following for **4**
 a) \(b^2 - 4ac < 0\), so does not factorise.
 b) \((x - 1)(x^2 + 4x + 5)\) does not factorise.
 c) \((x - 1)(x \ldots)(x \ldots)\) cannot factorise further.

3. Candidates who use algebraic long division to arrive at \((x - 1)(x^2 + 4x + 5)\) gain marks **1**, **2** and **3**.

4. Candidates who complete the square and make a relative comment regarding no real roots gain **4**.

5. Treat \((x - 1)x^2 + 4x + 5\), with a valid reason, as bad form for **4**.

Regularly Occurring Responses:

<table>
<thead>
<tr>
<th>Candidate A</th>
<th>Candidate B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + 4x + 5)</td>
<td>(x^3 + 3x^2 + x - 5 = (x - 1)(\ldots x^2 + \ldots + \ldots))</td>
</tr>
<tr>
<td>((x - 1)(x + 5)(x - 1))</td>
<td>(= (x - 1)(x^2 + 4x + 5))</td>
</tr>
</tbody>
</table>

- **3** ✓
- **4** ×

With a valid reason.

<table>
<thead>
<tr>
<th>Candidate C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + 4x + 5)</td>
</tr>
<tr>
<td>((x - 1)x^2 + 4x + 5)</td>
</tr>
<tr>
<td>(b^2 - 4ac = 16 - 20 < 0) so does not factorise.</td>
</tr>
<tr>
<td>1 ✓</td>
</tr>
</tbody>
</table>
Show that the curve with equation
\(y = x^4 + 4x^3 + 2x^2 - 20x + 3 \) has only one stationary point.

Find the \(x \)-coordinate and determine the nature of this point.

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

6. \(= 0 \) must appear at \(*^6 \) or \(*^7 \) for mark \(*^6 \) to be gained.

7. \(*^9 \) can be gained using the second derivative to determine the nature.

8. Candidates who incorrectly obtain more than one linear factor in (a) and use this result in (b) **must** solve to get more than one solution in order to gain \(*^8 \). Mark \(*^9 \) is not available.

9. If the equation solved at \(*^8 \) is not a cubic then \(*^8 \) and \(*^9 \) are not available.

Regularly Occurring Responses:

Candidate D

\((x - 1)(x + 5)(x - 1)\) from (a)

leading to
\[
4x^3 + 12x^2 + 4x - 20 = 0 \\
4(x^3 + 3x^2 + x - 5) = 0 \\
4(x - 1)(x + 5)(x - 1) = 0 \\
x = 1 \text{ or } x = -5
\]

<table>
<thead>
<tr>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>(\frac{dy}{dx})</td>
</tr>
</tbody>
</table>

Min

Minimum acceptable response.
The line with equation \(y = 2x + 3 \) is a tangent to the curve with equation \(y = x^3 + 3x^2 + 2x + 3 \) at \(A(0, 3) \), as shown in the diagram.

The line meets the curve again at \(B \).

Show that \(B \) is the point \((-3, -3)\) and find the area enclosed by the line and the curve.

\[
\begin{align*}
\bullet^1 & \quad \text{ss} \quad \text{know how to show that } B \text{ is the point of intersection of the line and curve.} \\
\bullet^2 & \quad \text{ss} \quad \text{know to integrate and interpret limits.} \\
\bullet^3 & \quad \text{ic} \quad \text{use “upper – lower”} \\
\bullet^4 & \quad \text{pd} \quad \text{integrate} \\
\bullet^5 & \quad \text{pd} \quad \text{substitute limits} \\
\bullet^6 & \quad \text{pd} \quad \text{evaluate area}
\end{align*}
\]

\[
\begin{align*}
\bullet^1 & \quad (-3)^3 + 3(-3)^2 + 2(-3) + 3 = -3 \\
\text{and } & \quad 2(-3) + 3 = -3 \\
\text{or solving simultaneous equations} \\
\bullet^2 & \quad \int_{-3}^{0} \cdots \cdots \\
\bullet^3 & \quad \int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx \\
\bullet^4 & \quad \frac{1}{4} x^4 + x^3 \\
\bullet^5 & \quad 0 - \left(\frac{1}{4}(-3)^4 + (-3)^3 \right) \\
\bullet^6 & \quad \frac{27}{4} \text{ units}^2
\end{align*}
\]

Notes:
1. Where a candidate differentiates one or more terms at \(\bullet^4 \) then \(\bullet^5 \) and \(\bullet^6 \) are not available.
2. Candidates who substitute without integrating at \(\bullet^3 \) do not gain \(\bullet^4 \), \(\bullet^5 \) and \(\bullet^6 \).
3. Candidates must show evidence that they have considered the upper limit 0 at \(\bullet^5 \).
4. Where candidates show no evidence for both \(\bullet^4 \) and \(\bullet^5 \), but arrive at the correct area, then \(\bullet^4 \), \(\bullet^5 \) and \(\bullet^6 \) are not available.
5. The omission of \(dx \) at \(\bullet^3 \) should not be penalised.

Regularly Occurring Responses:

Candidate A
\[
\int_{-3}^{0} (\text{lower – upper}) \, dx \quad \bullet^3 \checkmark
\]
\[
= \frac{27}{4} \quad \bullet^6 \checkmark
\]

Page 20
<table>
<thead>
<tr>
<th>Candidate B</th>
<th>Candidate C</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3 - 2x + 3)]</td>
<td>[\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx]</td>
</tr>
<tr>
<td>= [\frac{x^4}{4} + x^3]</td>
<td>= -[\frac{27}{4}] cannot be negative so (\frac{27}{4})</td>
</tr>
</tbody>
</table>

However, \(\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx \)

Reference to ‘Area’ must be made.

<table>
<thead>
<tr>
<th>Candidate D</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx]</td>
</tr>
<tr>
<td>= [\frac{1}{4}x^4 + x^3 + x^2 + 3x - x^2 + 3x] [- \frac{1}{4}x^4 + (-3)^3 + 3(-3) - (-3)^2 + 3(-3)] [= -\frac{45}{4}]</td>
</tr>
</tbody>
</table>

See Candidate C

<table>
<thead>
<tr>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int_{-3}^{3} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx]</td>
</tr>
<tr>
<td>= [\frac{1}{4}x^4 + x^3] [- \frac{1}{4}x^4 + (-3)^3] [= 54 \text{ units}^2]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate F</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int_{-3}^{3} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx]</td>
</tr>
<tr>
<td>= [\frac{1}{4}x^4 + x^3 + x^2 + 3x - x^2 + 3x] [- \frac{1}{4}x^4 + (-3)^3 + 3(-3) - (-3)^2 + 3(-3)] [= 54 + 18 + 18] [= 90 \text{ units}^2]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate G</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int_{-3}^{3} x^3 + 3x^2 + 2x + 3 - 2x + 3 dx]</td>
</tr>
<tr>
<td>= [\int_{-3}^{0} x^3 + 3x^2 + 6 dx]</td>
</tr>
<tr>
<td>= [\frac{1}{4}x^4 + x^3 + 6x] [- \frac{1}{4}(-3)^4 + (-3)^3 + 6(-3)] [= \frac{99}{4} \text{ units}^2]</td>
</tr>
</tbody>
</table>
Question 5

Solve the equation

\[\log_5 (3 - 2x) + \log_5 (2 + x) = 1, \] where \(x \) is a real number.

Generic Scheme

1. **ss** use correct law of logs
2. **ic** know to and convert to exponential form
3. **pd** express as an equation in standard quadratic form
4. **ic** solve quadratic

Illustrative Scheme

1. \[\log_5 [(3 - 2x) (2 + x)] = 1 \]
2. \((3 - 2x) (2 + x) = 5^1 \)
3. \(2x^2 + x - 1 = 0 \)
4. \(x = \frac{1}{2}, \ x = -1 \)

Max Mark

4

Notes:

1. For **ss** accept \(\ldots = \log_5 5 \).
2. Where candidates discard an acceptable solution either by crossing out or by explicit statement, then **ic** is not available.

Regularly Occurring Responses:

Candidate A

\[x = \frac{1}{2}, \ x = -1 \]

Candidate B

\[2x^2 + x - 1 = 0 \]
\[(2x + 1)(x - 1) = 0 \]
\[x = \frac{1}{2}, \ x = 1 \]

Candidate C

incorrect working leading to \[x = -2, \ x = 1 \]
Here the discard of \(x = -2 \) is valid in the context of the original question.

Candidate D

\[\log_5 \left(\frac{3-2x}{2+x} \right) = 1 \]
\[\frac{3-2x}{2+x} = 5^1 \]

Candidate E

\[\log_5 [(3 - 2x)(2 + x)] = 1 \]
\[(3 - 2x) (2 + x) = 1 \]
\[2x^2 - x - 6 = 0 \]
\[x = 2, \ x = \frac{-3}{2} \]

Candidate F

\[(3 - 2x) (2 + x) = 1 \]
\[2x^2 - x - 6 = 0 \]
\[x = 2, \ x = \frac{-3}{2} \]

ic is not awarded since \(x = 2 \) is not a valid solution.
Given that \(\int_0^3 5 \sin 3x \, dx = \frac{10}{3} \), \(0 \leq a < \pi \), calculate the value of \(a \).

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Given that (\int_0^3 5 \sin 3x , dx = \frac{10}{3}), (0 \leq a < \pi), calculate the value of (a).</td>
<td>[\left[-\frac{5}{3} \cos 3x \right]_0^a = \frac{10}{3}]</td>
<td>5</td>
</tr>
</tbody>
</table>

- **1** ss integrate correctly
- **2** pd process limits
- **3** pd evaluate and form a correct equation
- **4** pd start to solve equation
- **5** pd solve for \(a \)

Notes:
1. Candidates who include solutions outwith the range cannot gain **1**.
2. The inclusion of \(+ c\) at **1** should be treated as bad form.
3. **1** is only available for a valid numerical answer.
4. Where the candidate differentiates **1** and **2** are not available. See Candidate A.
5. Where candidate integrate incorrectly **2**, **3**, **4** and **5** are still available.
6. The value of \(a \) must be given in radians.

Regularly Occurring Responses:

<table>
<thead>
<tr>
<th>Candidate A</th>
<th>Candidate B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[15 \cos 3x]_0^a]</td>
<td>[[-5 \cos 3x]_0^a]</td>
</tr>
<tr>
<td>(15 \cos 3a - 15 \cos 0)</td>
<td>(-5 \cos 3a + 5 \cos 0)</td>
</tr>
<tr>
<td>(15 \cos 3a - 15 = \frac{10}{3})</td>
<td>(-5 \cos 3a + 5 = \frac{10}{3})</td>
</tr>
<tr>
<td>(\cos 3a = \frac{55}{45})</td>
<td>(\cos 3a = \frac{1}{3})</td>
</tr>
<tr>
<td>no solutions</td>
<td>(a = 0 \cdot 41)</td>
</tr>
<tr>
<td></td>
<td>Ignore other solutions in given interval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate C</th>
<th>Candidate D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{3} \cos 3x)</td>
<td>(-15 \cos 3x)</td>
</tr>
<tr>
<td>(\frac{5}{3} \cos 3a - \frac{5}{3} \cos 0)</td>
<td>(-15 \cos 3a + 15 \cos 0)</td>
</tr>
<tr>
<td>(\frac{5}{3} \cos 3a - \frac{5}{3} = \frac{10}{3})</td>
<td>(-15 \cos 3a + 15 = \frac{10}{3})</td>
</tr>
<tr>
<td>(\cos 3a = 3)</td>
<td>(\cos 3a = \frac{7}{9})</td>
</tr>
<tr>
<td>no solutions</td>
<td>(a = 0 \cdot 23)</td>
</tr>
<tr>
<td></td>
<td>Ignore other solutions in given interval</td>
</tr>
</tbody>
</table>
Question 7

A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1
The frame of a shelter is to be made of rods of two different lengths:
- x metres for top and bottom edges;
- y metres for each sloping edge.

Condition 2
The frame is to be covered by a rectangular sheet of material.
The total area of the sheet is 24 m^2.

(\[L = 3x + \frac{48}{x} \]

Notes:
1. The substitution for y at \bullet^3 must be clearly shown.

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.</td>
<td>![Diagram of a shelter]</td>
<td></td>
</tr>
</tbody>
</table>
7 b These rods cost £8·25 per metre.

To minimise production costs, the total length of rods used for a frame should be as small as possible.

i Find the value of x for which L is a minimum.

ii Calculate the minimum cost of a frame.

<table>
<thead>
<tr>
<th></th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>These rods cost £8·25 per metre.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To minimise production costs, the total length of rods used for a frame should be as small as possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Find the value of x for which L is a minimum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculate the minimum cost of a frame.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 pd prepare to differentiate</td>
<td>$4 \ldots 48x^{-1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 pd differentiate</td>
<td>$5 3 - 48x^{-2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 pd equate derivative to 0</td>
<td>$6 3 - 48x^{-2} = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 pd process for x</td>
<td>$7 x = 4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 ic verify nature</td>
<td>8 nature table or 2nd derivative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 ic evaluate L</td>
<td>$9 L = 24$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 pd evaluate cost</td>
<td>10 cost $24 \times 8·25 = £198$</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

2. Do not penalise the non-appearance of -4 at 7. However candidates who process $x = -4$ to obtain $L = -24$ do not gain 9.

3. $y = 24$ is not awarded 9.

Regularly Occurring Responses:

Candidate A

$L = 3x + \frac{48}{x}$

$$\frac{dL}{dx} = 3 - \frac{48}{x^2}$$

Candidate B

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{dL}{dx}$</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Minimum acceptable response

Candidate C

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{dL}{dx}$</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Do not penalise the inclusion of $x = -4$
Question 8

Solve algebraically the equation \(\sin 2x = 2 \cos^2 x \) for \(0 < x < 2\pi \)

<table>
<thead>
<tr>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1) ss use correct double angle formulae</td>
<td>(^4) (2 \sin x \cos x)</td>
<td>1</td>
</tr>
<tr>
<td>(^2) ss form correct equation</td>
<td>(^2) (2 \sin x \cos x - 2\cos^2 x = 0)</td>
<td>2</td>
</tr>
<tr>
<td>(^3) ss take out common factor</td>
<td>(^1) (2 \cos x (\sin x - \cos x) = 0)</td>
<td>3</td>
</tr>
<tr>
<td>(^4) ic proceed to solve</td>
<td>(^4) (\cos x = 0) and (\sin x = \cos x)</td>
<td>4</td>
</tr>
<tr>
<td>(^5) pd find solutions</td>
<td>(^5) (\pi) (\frac{3\pi}{2}) (\frac{\pi}{4})</td>
<td>5</td>
</tr>
<tr>
<td>(^6) pd find remaining solutions</td>
<td>(^6) (\frac{\pi}{4}) (\frac{5\pi}{2})</td>
<td>6</td>
</tr>
</tbody>
</table>

Method 1

\[
\sqrt{2} \sin \left(2x - \frac{\pi}{4}\right) = 1
\]

\[
\sin \left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}
\]

\[
x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}
\]

Method 2

\[
\cos 2x + 1
\]

\[
\sin 2x - \cos 2x = 1
\]

\[
\sqrt{2} \sin \left(2x - \frac{\pi}{4}\right) = 1
\]

\[
\sin \left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}
\]

\[
x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}
\]

Notes:

1. In Method 1, \(= 0 \) must appear at stage \(^2 \) or \(^3 \) for \(^4 \) to be available.
2. Accept the use of the wave function to solve \(\sin x - \cos x = 0 \) at stage \(^4 \) in Method 1.
3. Accept \(\sin 2x = -\cos 2x = 0 \) as evidence for \(^3 \).
4. For candidates who obtain all four solutions in degrees \(^6 \) can be gained but \(^5 \) is not available.

Regularly Occurring Responses:

Candidate A

Correct working leading to \(x = 45^0, 90^0, 225^0, 270^0 \)

Candidate B

Correct working leading to \(x = 90^0, 270^0 \)
The concentration of the pesticide, \textit{Xpesto}, in soil can be modelled by the equation \[P_t = P_0 e^{-kt} \]

where:
- \(P_0 \) is the initial concentration;
- \(P_t \) is the concentration at time \(t \);
- \(t \) is the time, in days, after the application of the pesticide.

Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of \textit{Xpesto} is 25 days, find the value of \(k \) to 2 significant figures.

\[
\frac{1}{2} P_0 = P_0 e^{-25k}
\]

\[
e^{25k} = \frac{1}{2}
\]

\[
\log_e \frac{1}{2} = -25k
\]

\[
k \approx 0.028
\]

Notes:
1. Do not penalise candidates who substitute a numerical value for \(P_0 \) in part (a).

Regularly Occurring Responses:

Candidate A

\[
\frac{1}{2} P_0 = P_0 e^{-25k}
\]

\[
\frac{1}{2} = e^{-25k}
\]

\[
\log_{10} \left(\frac{1}{2} \right) = -25k \log_{10} e
\]

\[
k = 0.028
\]
Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?

\[
P_t = P_0 e^{-80 \times 0.028}
\]

\[
P_t \approx 0 \cdot 1065 P_0
\]

\[
P_t \approx 0 \cdot 1088 \ldots P_0
\]

\[
P_t \approx 0 \cdot 1065 P_0
\]

\[
P_t = 10 \cdot 65
\]

\[
\Rightarrow \text{Percentage decrease is } 100 - 10 \cdot 65 = 89\cdot35\%
\]

\[
P_t = 0 \cdot 1065 P_0
\]

\[
\Rightarrow 89\cdot35\% \text{ decrease}
\]

<table>
<thead>
<tr>
<th>Question</th>
<th>Generic Scheme</th>
<th>Illustrative Scheme</th>
<th>Max Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 b</td>
<td>Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ic interpret equation</td>
<td>• 5 [P_t = P_0 e^{-80 \times 0.028}]</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>• pd process</td>
<td>• 6 [P_t \approx 0 \cdot 1065 P_0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ic state percentage decrease</td>
<td>• 7 [89%]</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

2. For candidates who use a value of \(k \) which does not round to \(0 \cdot 028 \), • 5 is not available unless already penalised in part(a).

3. For a value of \(k \) ex-nihilo then • 5, • 6 and • 7 are not available.

4. • 6 is only available for candidates who express \(P_t \) as a multiple of \(P_0 \).

5. Beware of candidates using proportion. This is not a valid strategy.

Regularly Occurring Responses:

Candidate B

\[
P_t = P_0 e^{-0.03 \times 80}
\]

\[
= 0 \cdot 0907
\]

leading to \(90 \cdot 9\% \)

\[
P_t = 89\% P_0
\]

Candidate C

\[
P_t = P_0 e^{-80 \times 0.0277 \ldots}
\]

\[
P_t \approx 0 \cdot 1088 \ldots P_0
\]

89 \cdot 11\ldots\%

Candidate D

\[
P_t = 89\% P_0
\]

Candidate E

\[
P_t = P_0 e^{-80 \times 0.028}
\]

Let \(P_0 \) be 100 and \(P_t = 100 \times 0 \cdot 1065 \)

Candidate F

\[
P_t = 100 e^{-80 \times 0.028}
\]

\[
P_t = 10 \cdot 65
\]

\[
\Rightarrow 89\cdot35\%
\]

Candidate G

\[
P_t = P_0 e^{-80 \times 0.028}
\]

\[
P_t = 1 \times e^{-80 \times 0.028}
\]

\[
P_t = 10 \cdot 65
\]

\[
\Rightarrow 89\cdot35\% \text{ decrease}
\]

Candidate H

\[
P_t = P_0 e^{-80 \times 0.028}
\]

\[
P_t = P_0 e^{-80 \times 0.028}
\]

\[
P_t = 0.1065 P_0
\]

\[
\Rightarrow 89\cdot35\% \text{ decrease}
\]