

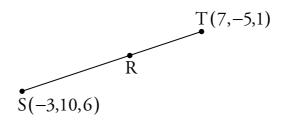
Higher Mathematics

UNIT 3

Specimen NAB Assessment

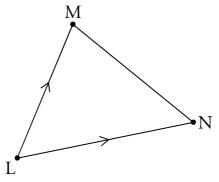
HSN23510

This document was produced specially for the HSN.uk.net website, and we require that any copies or derivative works attribute the work to Higher Still Notes.


For more details about the copyright on these notes, please see http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/

UNIT 3

Specimen NAB Assessment


Outcome 1

- 1. (a) Points A, B and C have coordinates (-4,-3,1), (0,-1,0) and (4,1,-1) respectively.
 - (i) Write down the components of \overrightarrow{AC} .
 - (ii) Hence show that the points A, B and C are collinear.
 - (b) The point R divides \overrightarrow{ST} in the ratio 3:2, as shown below.

Find the coordinates of R.

2. The diagram shows triangle LMN where $\overrightarrow{LM} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$ and $\overrightarrow{LN} = \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix}$.

- (a) Find the value of $\overrightarrow{LM}.\overrightarrow{LN}$.
- (b) Use your answer from part (a) to find the size of angle MLN.

 4

whsn.uk.net

4

3

1

1

Outcome 2

- 3. (a) Differentiate $-2\sin x$ with respect to x.
 - (b) Given $y = 5\cos x$, find $\frac{dy}{dx}$.
- 4. Find f'(x) when $f(x) = (2x+7)^{\frac{1}{3}}$.
- 5. (a) Find $\int \left(\frac{\sqrt{3}}{2}\cos x\right) dx$.
 - (b) Integrate $3\sin x$ with respect to x.
 - (c) Evaluate $\int_{4}^{6} (x-3)^3 dx$.

Outcome 3

- 6. (a) Simplify $\log_a 7 + \log_a 3$.
 - (b) Simplify $\log_3 5 3\log_3 2$.
 - (c) Evaluate $\log_2 2$.
- 7. (a) Given $x = \frac{\log_e 7}{\log_e 4}$, find an approximation for x.
 - (b) Given $\log_{10} y = 3.1$, write an expression for the exact value of y. 1
 - (c) Given $y = 10^{2.9}$, find an approximation for y.

Outcome 4

8. Express $12\cos x^{\circ} + 5\sin x^{\circ}$ in the form $k\cos(x^{\circ} - a^{\circ})$ where k > 0 and $0 \le a \le 360$.

Marking Instructions

Pass Marks

Outcome 1 Outcome 2 Outcome 3 Outcome 4

$$\frac{9}{12}$$

$$\frac{8}{11}$$

Outcome 1 – Vectors

1. (a) (i)
$$\overrightarrow{AC} = c - a = \begin{pmatrix} 8 \\ 4 \\ -2 \end{pmatrix} \checkmark = 2 \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$$

ullet Components of \overrightarrow{AC}

1

(ii)
$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a} \checkmark = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} -4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} \checkmark$$

Since $2\overrightarrow{AB} = \overrightarrow{AC}$ and A is a common point, A, B and C are collinear. \checkmark

• Know to find \overrightarrow{AB} or \overrightarrow{BC}

• Components of \overrightarrow{AB} or \overrightarrow{BC}

Conclusion

3

(b)
$$\frac{SR}{RT} = \frac{3}{2} \checkmark$$
$$2\overline{SR} = 3\overline{RT}$$

$$2(r-s) = 3(t-r)$$

$$5r = 3t + 2s\checkmark$$

$$r = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$$

R is the point (3,1,3).

- Strategy for finding R
- Process
- State the coordinates of R

2. (a) $\overrightarrow{LM}.\overrightarrow{LN} = (3 \times -2) + (4 \times 4) + (2 \times 5) = 20$

• Calculate scalar product

1

3

	$\overrightarrow{LM}.\overrightarrow{LN}$	• Use $a.b = a b \cos\theta$	
	(b) $\cos M \hat{L} N = \frac{\overline{LM}.\overline{LN}}{ \overline{LM} \overline{LN} } \checkmark$	• Start to process	
	1 11 1	• Complete process	
	$=\frac{20}{\sqrt{3^2+4^2+2^2}\sqrt{(-2)^2+4^2+5^2}}$	• State angle	
	= 0.554 ✓		
	$\hat{MLN} = 56.4^{\circ} \checkmark \text{(to 1 d.p.)}$		4
Ou	tcome 2 – Further Calculus		
3.	(a) $\frac{d}{dx}(-2\sin x) = -2\cos x \checkmark$	Differentiate	1
	(b) $\frac{dy}{dx} = -5\sin x \checkmark$	Differentiate	
	$\frac{dx}{dx}$		1
4.	$f'(x) = \frac{1}{3}(2x+7)^{-\frac{2}{3}}\checkmark\times2\checkmark$	Differentiate term with	
		fractional power	
	$=\frac{2}{3\sqrt[3]{(2x+7)^2}}$	• Use chain rule	2
5.	(a) $\int \left(\frac{\sqrt{3}}{2}\cos x\right) dx = \frac{\sqrt{3}}{2}\sin x\checkmark + c\checkmark$	• Integrate	
	<i>y</i> (<i>z</i>)	• Constant of integration	2
	(b) $\int (3\sin x) dx = -3\cos x \checkmark + c$	• Integrate	1
	$(x-3)^4 \checkmark$	Raise power	
	(c) $\int_{4}^{6} (x-3)^{3} dx = \left[\frac{(x-3)^{4} \checkmark}{4 \checkmark} \right]_{4}^{6}$	Correct multiplier	
	$= \frac{1}{4}(6-3)^4 - \frac{1}{4}(4-3)^4 \checkmark$	Substitute limits	
	•	• Process	
	$=\frac{80}{4}$		
	= 20 ✓		4
Outcome 3 – Exponentials and Logarithms			
6.	(a) $\log_a 7 + \log_a 3 = \log_a 21 \checkmark$	$\bullet \log_a x + \log_a y = \log_a xy$	1
	(b) $\log_3 5 - 3\log_3 2 = \log_3 5 - \log_3 2^3 \checkmark$	• $k \log_a x + \log_a x^k$	
	$=\log_3\frac{5}{2^3}\checkmark$	$\bullet \log_a x - \log_a y = \log_a \frac{x}{y}$	
	2	• Complete	
	$=\log_3\frac{5}{8}\checkmark$		3
	(c) $\log_2 2 = 1$	• Know that $\log_a a = 1$	1
7.	(a) 1·404 ✓ (to 3 d.p.)	• Process	1

(b) $y = 10^{3.1} \checkmark$	• Use $\log_a y = x \iff y = a^x$	1	
(c) 794·3 ✓ (to 1 d.p.)	• Process	1	
Outcome 4 – Wave Functions			
8. $k\cos(x^{\circ} - a^{\circ}) = k\cos a^{\circ}\cos x^{\circ} + k\sin a^{\circ}\sin x^{\circ} \checkmark$ $k\cos a^{\circ} = 12$ $k\sin a^{\circ} = 5$ $\tan a^{\circ} = \frac{5}{12} \checkmark$ $a = 22.6 \checkmark \text{ (to 1 d.p.)}$	 Use compound angle formula Extract k cos a° and k sin a° Calculate k State tan a° Calculate a 		
So $12\cos x^{\circ} + 5\sin x^{\circ} = 13\cos(x^{\circ} - 22.6^{\circ})$.		5	

