Higher Mathematics

Specimen NAB Assessment

UNIT 2

Specimen NAB Assessment

Outcome 1

1. Show that $(x+2)$ is a factor of $f(x)=x^{3}-2 x^{2}-4 x+8$ and hence factorise fully $f(x)$.
2. Use the discriminant to determine the nature of the roots of the equation $3 x^{2}+4 x-2=0$.

Outcome 2

3. Find $\int \frac{6}{x^{3}} d x$, where $x \neq 0$.
4. The curve $y=x^{3}(3-x)$ is shown in the diagram below.

Calculate the shaded area enclosed between the curve and the x-axis between $x=0$ and $x=3$.
5. The diagram shows the line with equation $y=2 x-3$ and the curve with equation $y=x^{2}-5 x-3$.

Write down the integral which represents the shaded area.
Do not carry out the integration.

Outcome 3

6. Solve the equation $\sqrt{2} \sin 2 x=1$ for $0 \leq x<\pi$.
7. The diagram below shows two right-angled triangles.

(a) Write down the values of $\sin x$ and $\cos y$.
(b) By expanding $\cos (x+y)$ show that the exact value of $\cos (x+y)$ is $-\frac{16}{65}$.
8. (a) Express $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}$ in the form $\sin \left(a^{\circ}+b^{\circ}\right)$.
(b) Use your answer from part (a) to solve the equation $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}=\frac{\sqrt{3}}{2}$ for $0<x<360$.

Outcome 4

9. (a) A circle has radius 7 units and centre (2,-3).

Write down the equation of the circle.
(b) A circle has equation $x^{2}+y^{2}-10 x+6 y-3=0$.

Write down its radius and the coordinates of its centre.
10. Show that the straight line $y=-2 x-3$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x+4 y+8=0$.
11. The point $\mathrm{P}(10,5)$ lies on the circle with centre $(-2,0)$, as shown in the diagram below.

Find the equation of the tangent to the circle at P.

Marking Instructions

Pass Marks

Outcome 1	Outcome 2	Outcome 3	Outcome 4
$\frac{4}{6}$ $\boxed{8}$ 11 $\boxed{7}$		$\boxed{10}$	

Outcome 1 - Polynomials and Quadratics	
1. Since $f(-2)=0,(x+2)$ is a factor. $\begin{aligned} f(x) & =(x+2)(x-4 x+4)^{\checkmark} \\ & =(x+2)(x-2)(x-2)^{\checkmark} \end{aligned}$	- Know to evaluate $f(-2)$ - Complete evaluation and conclusion - Quadratic factor - Factorise quadratic
2. $\begin{aligned} & b^{2}-4 a c \\ = & 4^{2}-4 \times 3 \times(-2) \\ = & 40 \end{aligned}$ Since $b^{2}-4 a c>0$, the roots are real and distinct.	- Use the discriminant - Calculate discriminant and state nature of roots
Outcome 2 - Integration	
$\text { 3. } \begin{aligned} \int \frac{6}{x^{3}} d x & =\int\left(6 x^{-3}\right) d x \checkmark \\ & =\frac{6 x^{-2}}{-2}+c \\ & =-3 x^{-2} \checkmark+c \checkmark \end{aligned}$	- Express in standard form - Integrate term with negative power - Constant of integration
4. $\begin{aligned} \int_{0}^{3} \sqrt{ } x^{3}(3-x) d x & =\int_{0}^{3 \vee}\left(3 x^{3}-x^{4}\right) d x \\ & =\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3} \checkmark \\ & =\left(\frac{3}{4}(3)^{4}-\frac{1}{5}(3)^{5}\right)-0 \checkmark \\ & =\frac{243}{20} \checkmark\left(\text { or } 12 \frac{3}{20}\right) \end{aligned}$	- Know to integrate with limits - Use correct limits - Integrate - Process limits - Complete process

5. $\begin{gathered} x^{2}-5 x-3=2 x-3 \\ x^{2}-7 x=0 \\ x(x-7)=0 \\ x=0 \quad \text { or } \quad x=7 \end{gathered}$ Shaded area is $\int_{0}^{7}\left((2 x-3)-\left(x^{2}-5 x-3\right)\right) d x \checkmark$ square units.	- Strategy to find intersection - Solve quadratic - Use $\int($ upper - lower $) d x$ with limits from quadratic
Outcome 3- Trigonometry	
6. $\quad \sin 2 x=\frac{1}{\sqrt{2}} \checkmark$ $2 x=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$ $\begin{aligned} & 2 x=\frac{\pi}{4} \quad \text { or } \quad \\ & x-\frac{\pi}{4} \\ & x=\frac{\pi}{8} \checkmark \text { or } \quad \frac{3 \pi}{8} \checkmark \end{aligned}$	- Rearrange to standard form - One solution - Second solution
7. (a) $\left.\begin{array}{l} \mathrm{AC}=\sqrt{9^{2}+12^{2}}=15 \\ \mathrm{DF}=\sqrt{10^{2}+24^{2}}=26 \end{array}\right\} \checkmark$	- Calculate remaining sides - $\sin x$ and $\cos y$
$\text { (b) } \begin{aligned} \cos (x+y) & =\cos x \cos y-\sin x \sin y \\ & =\frac{4}{5} \times \frac{5}{13}-\frac{3}{5} \times \frac{12}{13} \\ & =\frac{20}{65}-\frac{36}{65} \\ & =-\frac{16}{65} \end{aligned}$	- Use compound angle formula - Substitute values
8. (a) $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}=\sin \left(15^{\circ}+x^{\circ}\right) \checkmark$	- Use compound angle formula
	- Substitute $\sin \left(15^{\circ}+x^{\circ}\right)$ - Process $\sin ^{-1}$ - One solution - Second solution

Outcome 4 - Circles

9. (a) $(x-2)^{2}+(y+3)^{2} \checkmark=49 \checkmark$

- Centre
- Square of radius 2
(b) The centre is $(5,-3)$
- State centre

The radius is $\sqrt{(-5)^{2}+3^{2}-(-3)} \checkmark=\sqrt{37}$

- Know how to calculate radius
- Process radius

10. $\quad x^{2}+y^{2}+6 x+4 y+8=0$

$$
\begin{aligned}
x^{2}+(-2 x-3)^{2}+6 x+4(-2 x-3)+8 & =0 \checkmark \\
5 x^{2}+10 x+5 & =0 \checkmark \\
x^{2}+2 x+1 & =0
\end{aligned}
$$

$$
\begin{aligned}
b^{2}-4 a c \checkmark & =2^{2}-4 \times 1 \times 1 \\
& =16-16 \\
& =0 \checkmark
\end{aligned}
$$

- Strategy for finding intersection
- Express in standard form
- Know to calculate discriminant
- Calculate discriminant
- Conclusion

Since the discriminant is zero, the line is a tangent to the circle.
11. $m_{\mathrm{PC}}=\frac{5-0}{10+2} \checkmark=\frac{5}{12} \checkmark$

So $m_{\mathrm{tgt}}=-\frac{12}{5} \checkmark$ since the radius and tangent are perpendicular.

$$
\begin{aligned}
y-5 & =-\frac{12}{5}(x-10)^{\checkmark} \\
12 x+5 y-145 & =0
\end{aligned}
$$

- Know how to find gradient of radius
- Process gradient of radius
- Gradient of tangent
- Equation of tangent

