Higher
Mathematics

Specimen NAB Assessment

UNIT 1

Specimen NAB Assessment

Outcome 1

1. A line passes through the points $A(4,-3)$ and $B(-6,2)$.

Find the equation of this line.
2. A line makes an angle of 40° with the positive direction of the x-axis, as shown in the diagram.

Find the gradient of this line.
3. (a) Write down the gradient of a line parallel to $y=4 x+1$.
(b) Write down the gradient of a line perpendicular to $y=4 x+1$.

Outcome 2

4. The diagram below shows part of the graph of $y=f(x)$.

(a) Sketch the graph of $y=-f(x)$.
(b) On a separate diagram, sketch the graph of $y=f(x+4)$.
5. (a) The diagram below shows the curve $y=\sin x^{\circ}$ and a related curve.

Write down the equation of the related curve.
(b) The diagram below shows the curve $y=\cos x^{\circ}$ and a related curve.

Write down the equation of the related curve.
6. The curve $y=a^{x}$ is shown in the diagram below.

Given that the curve passes through the point $(1,3)$, write down the value of a.
7. The diagram below shows the graph of the function $f(x)=2^{x}$ and its inverse function.

Write down the formula for the inverse function.
8. (a) Two functions f and g are defined by $f(x)=x^{3}$ and $g(x)=2 x-4$. Find an expression for $f(g(x))$.
(b) Functions h and k are defined on suitable domains by $h(x)=5 x$ and $k(x)=\tan x$.
Find an expression for $k(h(x))$.

Outcome 3

9. Given that $y=\frac{x^{5}-3}{x^{3}}$ for $x \neq 0$, find $\frac{d y}{d x}$.
10. The curve with equation $y=x^{2}-5 x+6$ is shown below.

Find the gradient of the tangent to the curve at the point $(5,6)$.
11. A curve has equation $y=\frac{1}{3} x^{3}-4 x^{2}+12 x-3$.

Find the stationary points on the curve and, using differentiation, determine their nature.

Outcome 4

12. A pond is treated weekly with a chemical to ensure that the number of bacteria is kept low. It is estimated that the chemical kills 68% of all bacteria. Between the weekly treatments, it is estimated that 600 million new bacteria appear. There are u_{n} million bacteria at the start of a particular week.
(a) Write down a recurrence relation for u_{n+1}, the number of millions of bacteria at the start of the next week.
(b) Find the limit of the sequence generated by this recurrence relation and explain what the limit means in the context of this question.

Marking Instructions

Pass Marks

Outcome 1 Outcome 2 Outcome 3 Outcome 4

$\frac{4}{6}$	$\frac{6}{8}$
$\frac{11}{16}$	4

Outcome 1-Straight Lines		
$\text { 1. } \begin{array}{rlrl} m & =\frac{2-(-3)}{-6-4} \checkmark & y-2 & =-\frac{1}{2}(x+6) \checkmark \\ & =\frac{5}{-10} & x+2 y+2 & =0 \\ & =-\frac{1}{2} \checkmark & \end{array}$	- Use gradient formula - Calculate gradient - Equation of line	3
$\text { 2. } \begin{aligned} m & =\tan 40^{\circ} \\ & =0.84 \text { (to } 2 \text { d.p.) } \checkmark \end{aligned}$	- Calculate gradient	1
3. (a) $4 \checkmark$	- State gradient	1
(b) $-\frac{1}{4} \checkmark$	- State gradient	1
Outcome 2 - Functions and Graphs		
4. (a)	- Sketch showing images of given points	1
(b)	- Sketch showing images of given points	1

5. (a) $y=\sin x^{\circ}-2 \checkmark$	- Identify equation 1
(b) $y=\frac{1}{2} \cos x^{\circ} \checkmark$	- Identify equation 1
6. Since $y=3$ when $x=1$: $\begin{aligned} a^{1} & =3 \\ a & =3 \end{aligned}$	- State the value of $a \times 1$
7. $f^{-1}(x)=\log _{2} x \checkmark$	- State formula for inverse 1
$\text { 8. (a) } \begin{aligned} f(g(x)) & =f(2 x-4) \\ & =(2 x-4)^{3} \end{aligned}$	- Expression for composite function
$\text { (b) } \begin{aligned} k(h(x)) & =k(5 x) \\ & =\tan 5 x \end{aligned}$	- Expression for composite function
Outcome 3-Differentiation	
$\text { 9. } \begin{aligned} y & =\frac{x^{5}}{x^{3}}-\frac{3}{x^{3}} \\ & =x^{2} \checkmark-3 x^{-3} \checkmark \\ \frac{d y}{d x} & =2 x^{\checkmark}+9 x^{-4} \checkmark \end{aligned}$	- Simplify first term - Simplify second term - Differentiate first term - Differentiate second term
10. Gradient of tangent is given by $\frac{d y}{d x} \checkmark$ $\begin{aligned} & \frac{d y}{d x}=2 x-5 \checkmark \\ & \begin{aligned} \text { At } x=5 \checkmark, m & =2 \times 5-5 \\ & =5 \checkmark \end{aligned} \end{aligned}$	- Know to differentiate - Differentiate - Know to evaluate derivative - Calculate gradient

11. $\frac{d y}{d x} \checkmark=x^{2}-8 x+12 \checkmark$

Stationary points exist where $\frac{d y}{d x}=0$

$$
\begin{gathered}
x^{2}-8 x+12=0 \\
(x-6)(x-2)=0 \\
x=2 \text { or } x=6
\end{gathered}
$$

To find y-coordinates:

$$
\begin{aligned}
\text { At } x=6, y & =\frac{1}{3}(6)^{3}-4(6)^{2}+12(6)-3 \\
& =-3 \\
\text { At } x=2, y & =\frac{1}{3}(2)^{3}-4(2)^{2}+12(2)-3 \\
& =7 \frac{2}{3} \checkmark
\end{aligned}
$$

Stationary points are at $\left(2,7 \frac{2}{3}\right)$ and $(6,-3)$

$$
\begin{array}{c|ccccc}
x & \rightarrow & 2 & \rightarrow & 6 & \rightarrow \\
\hline \frac{d y}{d x} & + & 0 & - & 0 & + \\
\text { sketch } & / & - & \searrow & - & /
\end{array}
$$

$\left(2,7 \frac{2}{3}\right)$ is a maximum turning point \checkmark
$(6,-3)$ is a minimum turning point

- Know to differentiate
- Differentiate
- Set derivative equal to 0
- Find x-coordinates of stationary points
- Find y-coordinates of stationary points
- Method to determine nature
- Nature of one stationary point
- Nature of second stationary point

Outcome 4 - Sequences		
12. (a) $u_{n+1}=0 \cdot 32 u_{n}+600$	- State recurrence relation	1
(b) A limit l exists since $-1<0.32<1$ $\begin{aligned} l & =\frac{600}{1-0.32} \checkmark \\ & =882.35 \checkmark \text { (to } 2 \text { d.p.) } \end{aligned}$ In the long term, the number of bacteria will settle around 882 million \checkmark	- Know how to calculate limit - Calculate limit - Interpret limit	3

