

National Qualifications 2016

2016 Mathematics

Higher Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.


General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:
$${}^{5}x = 2$$
 and $x = -4$
 ${}^{6}y = 5$ $y = -7$
Horizontal: ${}^{5}x = 2$ and $x = -4$
 ${}^{6}y = -7$
Vertical: ${}^{5}x = 2$ and $y = 5$
 ${}^{6}x = -4$ and $y = -7$

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg (x³+2x²+3x+2)(2x+1) written as (x³+2x²+3x+2)×2x+1

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

For	exampl	e:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

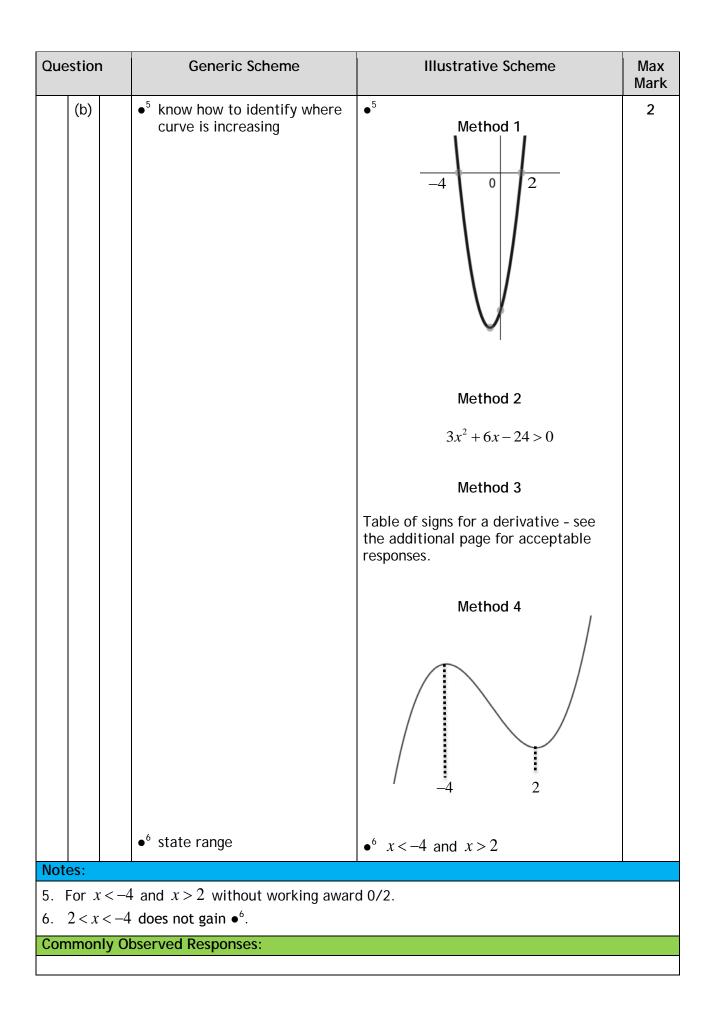
Specific Marking Instructions for each question

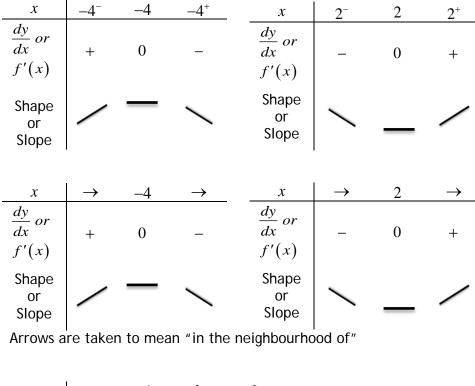
Que	estior	า	Generic Scheme	Illustrative Scheme	Max Mark
1.			• ¹ find the gradient	● ¹ -4	2
			• ² state equation	• ² $y+4x=-5$	
Not	es:				
1.	Acce	pt an	y rearrangement of $y = -4x - 5$ for •	2.	
2.	On th	nis oc	casion accept $y-3 = -4(x-(-2))$; ho	owever, in future candidates should ex	xpect
3. 4.	For a ● ² is	iny ac not a	cceptable answer without working, av vailable as a consequence of using a		
	For c	andic	dates who state $y-3=4(x-(-2))$ w	ith no other working, award 0/2.	
			bserved Responses:		
2.			• ¹ write in differentiable form	• ¹ + $8x^{\frac{1}{2}}$ stated or implied by • ³	3
			• ² differentiate first term	• ² $36x^2$	
			• ³ differentiate second term	• $4x^{-\frac{1}{2}}$	
Not	es:				
	 •³ is only available for differentiating a term with a fractional index. Where candidates attempt to integrate throughout, only •¹ is available. 				
Cor	nmor	nly Ol	bserved Responses:		

Question	Generic Scheme	Illustrative Scheme	Max Mark	
3. (a)	• ¹ interpret recurrence relation and calculate u_4	• $u_4 = 12$	1	
Notes:				
Commonly O	bserved Responses:			
(b)	• ² communicate condition for limit to exist	• ² A limit exists as the recurrence relation is linear and $-1 < \frac{1}{3} < 1$	1	
Notes:				
1. On this oc	or statements such as:	< 1 or $0 < \frac{1}{3} < 1$ with no further con		
	" $\frac{1}{3}$ lies between -1 and 1	" or " $\frac{1}{3}$ is a proper fraction	on "	
2. \bullet^2 is not a	available for: $-1 \le \frac{1}{3} \le 1$ or	J		
	or statements such as			
	"It is between -1 and	d 1" or " $\frac{1}{3}$ is a fraction"		
3. Candidate	es who state $-1 < a < 1$ can only gain •	a^2 if it is explicitly stated that $a = \frac{1}{3}$.		
Commonly O	bserved Responses:			
Candidate A		Candidate B		
$a = \frac{1}{2}$		$u_{n+1} = au_n + b$		
5		$u_{n+1} = \frac{1}{3}u_n + 10$		
-1 < a < 1 so a	a limit exists. \bullet^2 🗸	5		
		$-1 < a < 1$ so a limit exists. \bullet^2	^	
(c)	• ³ Know how to calculate limit	• ³ $\frac{10}{1-\frac{1}{3}}$ or $L = \frac{1}{3}L + 10$	2	
	• ⁴ calculate limit	• ⁴ 15		
Notes:				
4. Do not accept $L = \frac{b}{1-a}$ with no further working for \bullet^3 .				
1-a 5. • ³ and • ⁴ are not available to candidates who conjecture that $L = 15$ following the				
calculation of further terms in the sequence.				
6. For $L = 15$ with no working, award 0/2.				
Commonly O	bserved Responses:			

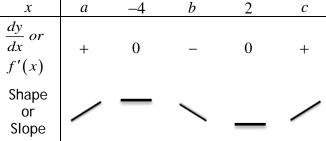
Que	stion		Generic	: Scheme	Illus	trative Scheme	Max Mark
4.			• ¹ find the centr	е	• ¹ (-3,4) st	ated or implied by	• ³ 3
			\bullet^2 calculate the	radius	$\bullet^2 \sqrt{17}$		
			• ³ state equatior	n of circle	• ³ $(x+3)^2$ + equivaler	$(y-4)^2 = 17 \text{ or}$	
Note	es:						
1. /	Ассер	ot $\frac{\sqrt{6}}{2}$	$\frac{\overline{58}}{2}$ for \bullet^2 .				
2.	• ³ is	not	available to candio	dates who do not si	mplify $\left(\sqrt{17}\right)^2$	or $\left(\frac{\sqrt{68}}{2}\right)^2$.	
				dates who do not at			
5.	● ³ is	not	available to candid	dates who use eithe dates who substitut	e a negative v	alue for the radius.	
6.	• ² &• ³	are	not available to ca	andidates if the dia	meter or radi	us appears ex nihilo).
Com	nmon	ly Ol	oserved Response	S:			
5.			• ¹ start to integr	ate	• ¹ ×sin(4	(x+1)	2
			• ² complete inte	gration	• ¹ × $sin(4$ • ² $2sin(4x - $	+1)+c	
Note	es:						
1. /	An ans	swer	which has not bee	en fully simplified,	eg $\frac{8\sin(4x+4)}{4}$	$\frac{1}{2}$ + c or $\frac{4\sin(4x)}{2}$	+1) + c,
		-	ain ● ² .	wardiated through			
				erentiated inrough	•	t (indicated by the a	appearance
		•	0			$(x+1)^2$ or for any w	orking
	therea			5	- (, .	- -
Com	nmonl	ly Ol	oserved Response	s:			
Can	didate	e A		Candidate C		Candidate E	
Diff	erenti	iateo	throughout:	Differentiated in p	part:	Differentiated in p	art:
$-32\sin(4x+1)+c$ award 0/2 32sir			+c award 0/2	$32\sin(4x+1)+c$ aw	vard 1/2	$-2\sin(4x+1)+c$ a	ward 1/2
Candidate B Candidate D		Candidate D		Candidate F			
Differentiated throughout: Differentiated in page		part:	Differentiated in p	art:			
-32	sin(4)	(x+1)	award 0/2	$32\sin(4x+1)$ av	vard 0/2	$-2\sin(4x+1)$ a	ward 0/2

Question		ı	Generic Scheme	Illustrative Scheme	Max Mark	
6.	(a)			Method 1: 1 c(c-1(c))	3	
				• $f(f^{-1}(x)) = x$ • $3f^{-1}(x) + 5 = x$		
			• ² write $f(f^{-1}(x))$ in terms of $f^{-1}(x)$	• $3j(x) + 3 = x$		
			• ³ state inverse function	• ³ $f^{-1}(x) = \frac{x-5}{3}$		
				Method 2:	3	
			• ¹ write as $y = 3x + 5$ and start to rearrange	• ¹ $y-5=3x$		
			• ² complete rearrangement	$\bullet^2 x = \frac{y-5}{3}$		
			• ³ state inverse function	• $f^{-1}(x) = \frac{x-5}{3}$		
				Method 3	3	
			 ¹ interchange variables 	$\bullet^1 x = 3y + 5$		
			• ² complete rearrangement	$\bullet^2 \frac{x-5}{3} = y$		
			• ³ state inverse function	• ³ $f^{-1}(x) = \frac{x-5}{3}$		
Not	es:	1			I	
1.	$y = \frac{x}{x}$	$\frac{x-5}{3}$	does not gain ● ³ .			
2.	At •	³ stag	je, accept f^{-1} expressed in terms of	any dummy variable eg $f^{-1}(y) = \frac{y-x}{3}$	<u>5</u> .	
3.	$f^{-1}($	(x) =	$\frac{x-5}{3}$ with no working gains 3/3.			
		<u> </u>	bserved Responses:			
Can	didat	te A				
			×3 +5			
			$x \to 3x \to 3x + 5 = f(x)$			
		• ¹	$\frac{\div 3 -5}{\frac{x-5}{3} \bullet^2 \checkmark}$	• ¹ awarded for knowing to		
	$\frac{x-3}{3} \bullet^2 \checkmark$ perform inverse operations in reverse order.					
f^{-1}	(x) =	$=\frac{x-3}{3}$	5 ● ³ ✓			


Question	Generic Scheme	Illustrative Scheme	Max Mark	
(b)	• ¹ correct value	• ¹ 2	1	
Notes:				
Commonly Ol	bserved Responses:			
Candidate B				
g(x) = 3x + 1				
$g(2) = 3 \times 2 +$	1 = 7			
$g^{-1}(x) = \frac{x-1}{3}$				
$g^{-1}(7) = \frac{7-1}{3}$	=2 • ⁴ ×			
If the candidate had followed this by stating that this would be true for all functions g for				
which $g(2) =$	7 and g^{-1} exists then \bullet^4 would be a	warded.		


Question	Generic Scheme	Illustrative Scheme	Max Mark				
7. (a)	• ¹ identify pathway	• ¹ $\overrightarrow{FG} + \overrightarrow{GH}$	2				
	• ² state \overrightarrow{FH}	• ² $\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$					
 Award •¹ For i+3j Accept, t •² is not a Where ca are available 	 For i+3j-4k without working, award both ●¹ and ●². Accept, throughout the question, solutions written as column vectors. ●² is not available for adding or subtracting vectors within an invalid strategy. 						
Commonly C	bserved Responses:						
$\overrightarrow{FH} = \overrightarrow{FG} + \overrightarrow{E}$ $\begin{pmatrix} -2 \\ -6 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix}$							
(b)	 ●¹ identify pathway □ 	• ¹ $\overrightarrow{FH} + \overrightarrow{HE}$ or equivalent	2				
	\bullet^2 FE	\bullet^2 -i-5k					
Notes: 6. Award • ³ for $(i+3j-4k)-(2i+3j+k)$ or $(i+3j-4k)+(-2i-3j-k)$ or $(-2i-6j+3k)+(3i+9j-7k)-(2i+3j+k)$ or $(-2i-6j+3k)+(3i+9j-7k)+(-2i-3j-k)$. 7. For $-i-5k$ without working, award 0/2. 8. • ⁴ is not available for simply adding or subtracting vectors. There must be evidence of a valid strategy at • ³ .							
Commonly C	bserved Responses:						

Questio	on	Generic Scheme	Illustrative Scheme	Max Mark
8.		 ¹ substitute for y Method 1 & 2 ² express in standard quadratic 	• $x^{2} + (3x-5)^{2} + 2x - 4(3x-5) - 5$ Method 1 • $10x^{2} - 40x + 40$	5
		form • ³ factorise or use discriminant	$ \left\{ \begin{array}{c} 0 & 10x & 40x + 40 \\ 0 & 10(x-2)^2 \end{array} \right\} = 0 $	
		 ⁴ interpret result to demonstrate tangency ⁵ find coordinates 	 ⁴ only one solution implies tangency (or repeated factor implies tangency) ⁵ x = 2, y = 1 Method 2 	
			• ² $10x^2 - 40x + 40 = 0$ stated explicitly • ³ $(-40)^2 - 4 \times 10 \times 40$ or	
		Method 3	$(-4)^2 - 4 \times 1 \times 4$ • ⁴ $b^2 - 4ac = 0$ so line is a tangent • ⁵ $x = 2, y = 1$ Method 3	
		• ¹ make inference and state m_{rad}	• ¹ If $y = 3x - 5$ is a tangent, $m_{rad} = \frac{-1}{3}$	
		 ² find the centre and the equation of the radius ³ solve simultaneous equations 	• ² (-1,2) and $3y = -x+5$ • ³ $3y = -x+5$ $y = 3x-5$ \rightarrow (2,1)	
		 ⁴ verify location of point of intersection 	• ⁴ check $(2,1)$ lies on the circle.	
		● ⁵ communicates result	 ⁵ ∴ the line is a tangent to the circle 	
Notes:				
2. Awa	ard ● ³ a	1 "=0" must appear at \bullet^2 or \bullet^3 sta and \bullet^4 for correct use of quadratic f	age for ● ² to be awarded. formula to get equal (repeated) roots	


 \Rightarrow line is a tangent.

Question	Generic Scheme	Illustrative Scheme	Max Mark	
Commonly O	bserved Responses:			
Candidate A		Candidate B		
$x^{2} + (3x-5)^{2}$	+2x-4(3x-5)-5=0 • ¹	$x^{2} + (3x-5)^{2} + 2x - 4(3x-5) - 5 = 0$	● ¹ ✓	
$10x^2 - 40x + 40$	$40 = 0$ $\bullet^2 \checkmark$	$10x^2 - 40x + 40$	• ² ^	
$b^2 - 4ac = (-4ac)$	$40)^2 - 4 \times 10 \times 40 = 0 \Longrightarrow \text{tgt} \bullet^3 \checkmark$	$b^{2}-4ac = (-40)^{2}-4\times10\times40 = 0 \Longrightarrow \text{tgt}$	● ³ √ 1	
Candidate C		Candidate D		
$x^{2} + (3x-5)^{2}$	+2x-4(3x-5)-5=0 • ¹ ✓	$x^{2} + (3x-5)^{2} + 2x - 4(3x-5) - 5 = 0$	● ¹ ✓	
$x^2 + 9x^2 + 25$	+2x - 12x + 20 - 5 = 0	$10x^2 - 40x + 40 = 0$	●² ✓	
$10x^2 - 10x + 4$		$10(x-2)^2$	● ³ ✓	
$b^2 - 4ac = (-10)^2 - 4 \times 10 \times 40 = -1500 \Rightarrow$ no real roots so line is not a tangent \bullet^3 1 • ⁴ and • ⁵ are unavailable.		Repeated root \Rightarrow Only one point of α	contact. ● ⁴ ✓	
9 (a)	 ¹ know to and differentiate one term 	• $f'(x) = 3x^2$	4	
	• ² complete differentiation and equate to zero	• ² $3x^2 + 6x - 24 = 0$		
	• ³ factorise derivative	• $3(x+4)(x-2)$		
	• ⁴ process for x	\bullet^4 -4 and 2		
Notes:				
 •² is only available if "=0" appears at •² or •³ stage. •³ is available for substituting correctly in the quadratic formula. At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 3. •³ and •⁴ are not available to candidates who arrive at a linear expression at •². 				
	bserved Responses:			

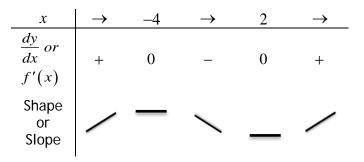


Table of signs for a derivative - acceptable responses.

Where: a<-4 , -4< b<2 , c>2 Since the function is continuous ' -4< b<2 ' is acceptable.

Since the function is continuous ' $-4 \rightarrow 2$ ' is acceptable.

General Comments

- Since this question refers to both y and f(x), $\frac{dy}{dx}$ and f'(x) are accepted.
- The row labelled 'shape' or 'slope' is not required in this question since the sign of the derivative is sufficient to indicate where the function is increasing.
- For this question, do not penalise the omission of 'x' on the top row of the table.

Question	ו	Generic Scheme	Illustrative Scheme	Max Mark
10.		 ¹ graph reflected in y = x ² correct annotation 	• ¹ (1,4) (1,4) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,4)	2
Notes:				
The g 2. Both	raph (0,1) only	must not cross the $x-axis$.) and $(1,4)$ must be marked and label available where the candidate has at	Ind orientation which crosses the $y - ay$ and on the graph for \bullet^2 to be awarded tempted to reflect the given curve in	d.
Common	ily Ol	bserved Responses:		

Question		ו	Generic Scheme	Illustrative Scheme	Max Mark
11.	(a)		• ¹ interpret ratio	• $\frac{1}{3}$ • $(2,1,0)$	2
Not			• ² determine coordinates	• ² (2,1,0)	
1. 2. 3. 4.	• ¹ ma For (For ($\begin{pmatrix} 2\\ 1\\ 0 \end{pmatrix}$	3,-1 2,1,0 gains	e implied by • ² or be evidenced by 1 ,2) award 1/2.)) without working award 2/2. 5 1/2.	heir working.	
	<mark>hmor</mark> dida		bserved Responses:	Candidate B	
			• ¹ ≭ • ² √1	$\frac{\overrightarrow{AB}}{\overrightarrow{BC}} = \frac{1}{2}$ $2\overrightarrow{AB} = \overrightarrow{BC}$ $2(\mathbf{b} - \mathbf{a}) = \mathbf{c} - \mathbf{b}$	
				$3\mathbf{b} = \mathbf{c} + 2\mathbf{a} \qquad \mathbf{\bullet}^{1} \checkmark$ $3\mathbf{b} = \begin{pmatrix} 6\\3\\0 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} \qquad \mathbf{B}(2,1,0) \qquad \mathbf{\bullet}^{2} \checkmark$	

Question	Generic	Scheme	Illus	trative Scheme	Max Mark	
(b)	\bullet^1 find \overrightarrow{AC}		• ¹ $\overrightarrow{AC} = \begin{pmatrix} 1 \\ -6 \\ -6 \end{pmatrix}$	3		
	\bullet^2 find $\left \overrightarrow{AC}\right $		• ² 9			
	• ³ determine k		$\bullet^3 \frac{1}{9}$			
Notes:			l			
	e for \bullet^3 may appear e implied at \bullet^4 stag					
		• $\sqrt{3^2 + (-6)^2 + 6^2}$ • $\sqrt{3^2 - 6^2 + 6^2} =$	2			
		• $\sqrt{3^2 - 6^2 + 6^2} =$	9			
		• $\sqrt{3^2 + -6^2 + 6^2} =$	= 9 .			
8. $\sqrt{81}$ mu	st be simplified at t	the \bullet^4 or \bullet^5 stage for	or \bullet^4 to be aw	varded.		
				at \bullet^4 . k must be >0		
	Observed Response	-				
Candidate A	•	Candidate B		Candidate C		
$\left \overrightarrow{\mathrm{AC}}\right = \sqrt{81}$	•4 🗸	$\left \overrightarrow{\mathrm{AC}}\right = \sqrt{81}$	• ⁴ •2	$\left \overrightarrow{\mathrm{AC}}\right = \sqrt{81}$	• ⁴ •2	
$\frac{1}{9}$	● ⁵ ✓	$\left \overrightarrow{AC} \right = \sqrt{81}$ $\frac{1}{\sqrt{81}}$	● ⁵ √ 1		● ⁵ ∧	
ALTERNATI	/E STRATEGY					
Where candidates use the distance formulae to determine the distance from A to C, award \bullet^3 for AC = $\sqrt{3^2 + 6^2 + 6^2}$.						
10 AC = $\sqrt{3}$	+0 +0 .					

Questio	n Generic Scheme	Illustrative Scheme	Max Mark					
12 . (a)	\bullet^1 interpret notation	• $^{1} 2(3-x)^2 - 4(3-x) + 5$	2					
	• ² demonstrate result	• ² $18-12x+2x^2-12+4x+5$ leading to $2x^2-8x+11$						
Notes:								
	² there must be a relevant intermediate st e awarded.	tep between \bullet^1 and the final answer for	or ● ²					
	$(-x)$ alone is not sufficient to gain \bullet^1 .							
,	are of candidates who fudge their working	between \bullet^1 and \bullet^2 .						
	nly Observed Responses:							
COMINO	ily observed kesponses.							
(b)		Method 1	3					
	• ¹ identify common factor	• $2[x^2 - 4x$ stated or implied by • ²						
	• ² start to complete the square	• ² $2(x-2)^2$						
	\bullet^3 write in required form	• $^{3} 2(x-2)^{2}+3$						
		Method 2						
	• ¹ expand completed square form	• ¹ $px^2 + 2pqx + pq^2 + r$						
	• ² equate coefficients	• ² $p = 2, 2pq = -8, pq^2 + r = 11$						
	• ³ process for <i>q</i> and <i>r</i> and write in required form	• $^{3} 2(x-2)^{2}+3$						
Notes:								
4. At •	⁵ $2(x+(-2))^2 + 3$ must be simplified to $2(x+(-2))^2 + 3$	$(x-2)^2+3$.						
5. $2(x)$	$(-2)^2 + 3$ with no working gains \bullet^5 only; he	owever, see Candidate G.						
	re a candidate has used the function they $\frac{4}{5}$ and $\frac{5}{5}$ are still be used		ot					
	available. However, \bullet^4 and \bullet^5 can still be gained for dealing with an expression of equivalent difficulty.							

●⁵ is only available for a calculation involving both the multiplication and addition of integers.

Candidate B $2x^2 - 8x + 11 = 2(x - 4)^2 - 16 + 11$ $\bullet^3 \times \bullet^4 \times$ $= 2(x - 4)^2 - 5$ $\bullet^5 \checkmark 2$
$2x^{2} - 8x + 11 = 2(x - 4)^{2} - 16 + 11 \qquad \bullet^{3} \times \bullet^{4} \times$ $= 2(x - 4)^{2} - 5 \qquad \bullet^{5} \checkmark 2$
$=2(x-4)^2-5$ • ⁵ \checkmark 2
Or will date D
Candidate D
$2[(x^{2}-8x)+11] •^{3} \times 2[(x-4)^{2}-16]+11 •^{4} \checkmark 1$ $2(x-4)^{2}-21 •^{5} \checkmark 1$
Candidate F
$px^{2}+2pqx+pq^{2}+r$ $p=2, 2pq=-8, pq^{2}+r=11$ $q=-2, r=3$ • ⁵ × • ⁵ is lost as no reference is made to completed square form
Candidate H $2x^2 - 8x + 11$ $= 2(x-2)^2 - 4 + 11$ $= 2(x-2)^2 + 7$ $\bullet^3 \checkmark \bullet^4 \checkmark$ $\bullet^5 \checkmark$

Question	Generic Scheme	Illustrative Scheme	Max Mark
13.	• ¹ calculate lengths AC and AD	• ¹ AC = $\sqrt{17}$ and AD = 5 stated or implied by • ³	5
	• ² select appropriate formula and express in terms of p and q	• ² $\cos q \cos p + \sin q \sin p$ stated or implied by • ⁴	
• ³ calculate two of $\cos p$, $\cos q$, $\sin p$, $\sin q$		• ³ $\cos p = \frac{4}{\sqrt{17}}$, $\cos q = \frac{4}{5}$ $\sin p = \frac{1}{\sqrt{17}}$, $\sin q = \frac{3}{5}$	
	 ⁴ calculate other two and substitute into formula 	$\bullet^4 \frac{4}{5} \times \frac{4}{\sqrt{17}} + \frac{3}{5} \times \frac{1}{\sqrt{17}}$	
	\bullet^5 arrange into required form	• ${}^{5} \frac{19}{5\sqrt{17}} \times \frac{\sqrt{17}}{\sqrt{17}} = \frac{19\sqrt{17}}{85}$	
		or	
		$\frac{19}{5\sqrt{17}} = \frac{19\sqrt{17}}{5\times17} = \frac{19\sqrt{17}}{85}$	
Notes:			
	ttempt to use $\cos(q-p) = \cos q - \cos p$ and \bullet^4 stages, do not penalise the use		from
	at \bullet^1 . \bullet^5 will be lost.		
3. Candidate	es who write $\cos\left(\frac{4}{5}\right) \times \cos\left(\frac{4}{\sqrt{17}}\right) + \sin\left(\frac{4}{\sqrt{17}}\right) + \sin\left$	$\left(\frac{3}{5}\right) \times \sin\left(\frac{1}{\sqrt{17}}\right)$ gain \bullet^1 , \bullet^2 and \bullet^3 .	
\bullet^4 and \bullet	⁵ are unavailable.		
4. Clear evid	dence of multiplying by $\frac{\sqrt{17}}{\sqrt{17}}$ must be s	seen between \bullet^4 and \bullet^5 for \bullet^5 to be a	warded.
	$5 \bullet^1$, \bullet^2 and \bullet^3 .		
Commonly O	bserved Responses:	-	
Candidate A		Candidate B	
$\left \frac{4}{5} \times \frac{4}{\sqrt{17}} + \frac{3}{5} \right $	$\frac{1}{\sqrt{17}}$ $\bullet^4 \checkmark$	$AC = \sqrt{17}$ and $AD = \sqrt{21}$	• ¹ ×
	¥±'	$\cos q \cos p + \sin q \sin p$	● ² ✓
$\frac{19}{5\sqrt{17}} \times \sqrt{17}$		$\cos p = \frac{4}{\sqrt{17}} \sin p = \frac{1}{\sqrt{17}}$	• 3 🗸
$\frac{19\sqrt{17}}{85}$	• ⁵ ×	$\frac{\sqrt{17}}{\sqrt{21}} \times \frac{4}{\sqrt{17}} + \frac{2}{\sqrt{21}} \times \frac{1}{\sqrt{17}}$	• ⁴ ×
		=● ⁵ not available	

Que	Question Generic		c Scheme	Illustra	ative Scheme	Max Mark			
14.	(a)		• ¹ state value		• ¹ 2		1		
Not	es:				1				
1.	1. Evidence for \bullet^1 may not appear until part (b).								
Commonly Observed Responses:									
	(b)		\bullet^2 use result of	part (a)	• ² $\log_4 x + \log_4 x$	$g_4(x-6) = 2$	5		
			• ³ use laws of lo	garithms	$\bullet^3 \log_4 x(x-e)$	(5) = 2			
			• ⁴ use laws of lo	garithms	$\bullet^4 x(x-6) = c$	4 ²			
			• ⁵ write in stand form	lard quadratic	• $x^2 - 6x - 16$	5 = 0			
			• ⁶ solve for <i>x</i> an appropriate s	5	•6 8				
Not	es:								
			-	for use of laws of l	ogarithms appli	ed to algebraic expres	sions of		
	•		t difficulty.	() $()$					
				$6) = 2^4$; however cannot have a polynomial of 6					
		-		nses which retain ir	• •				
			bserved Response						
Car	dida	te A		Candidate B		Candidate C			
log	,25 =	5	• ¹ ×	$\log_5 25 = 2$	● ¹ ✓	$\log_5 25 = 2$	● ¹ ✓		
	$\int_{1}^{1} x(x -$		$\bullet^2 \checkmark 1$	$\log_4 x(x-6) = 2$	• ² ✓	$\log_4 x(x-6) = 2$	● ² ✓		
	, (,	• ³ 🖌 1		• ³ ✓		● ³ ✓		
x(x)	$x(x-6) = 4^5 \qquad \bullet^4 \checkmark 1$		x(x-6)=8	• ⁴ ×	x(x-6)=8	• ⁴ ×			
	-6 <i>x</i> –	1024			●5 ✓1	$x^2 - 6x + 8 = 0$	• ⁵ ×		
35.	14		● ⁶ √ 1	7.12	● ⁶ √ 1	x = 2, 4	• ⁶ ×		
						$x = \mathcal{I} \mathcal{A}$	• ⁶ ×		

Que	Question		Generic	Scheme	Illustra	ative Scheme	Max Mark
15.	(a)		• ¹ value of a		$\bullet^1 a = 4$		3
			• ² value of b		• ¹ $a = 4$ • ² $b = -5$		
			• ³ calculate k		$\bullet^{3} k = -\frac{1}{12}$		
Not	es:				1		
1. E	vider	nce f	or the values of a	and b may first ap	opear in an expr	ession for $f(x)$. When	e marks
ł	ave	been	awarded for a and	nd b in an express	sion for $f(x)$ ig	nore any values attrib	outed to
	a and	d <i>b</i> i	n subsequent work	king.			
Con	nmon	ly Ol	bserved Response	S:			
	didat n root		erchanged	Candidate B		Candidate C Using (1,9)	
			• ¹ ×	$a = 4 \qquad \bullet^1 \\ b = 5 \qquad \bullet^2$	\checkmark		
<i>b</i> =	4		● ² √ 1	b=5 • ²	×	$\begin{array}{c} a = -4 \\ b = 5 \end{array} \qquad \bullet^1 \times \\ \bullet^2 \checkmark 1$	7
k =	$\frac{1}{6}$		• ³ √ 1	$k = -\frac{3}{16} \qquad \bullet^3$	√ 1	$k = \frac{9}{80} \qquad \bullet^3 \checkmark 1$	
Can	didat	te D ·	- BEWARE	Summary for expressions of $f(x)$ for \bullet^1 and \bullet^2 :			
Usir	ng (0	,9)			X	,	
			• ¹ ×	signs correct, bra	ackets correct		
<i>b</i> =	4		● ² √ 1	f(x) = (x-4)(x-4)	$(+5)^2 \bullet^1 \checkmark \bullet^2 \checkmark$	/	
				signs incorrect, k	-		
k =	$\frac{9}{20}$		• ³ ×	f(x) = (x+4)(x	$(-5)^2 \bullet^1 \times \bullet^2 \checkmark$	´ 1	
	80			signs correct, bra	,		
				f(x) = (x+5)(x+5)(x+5)(x+5)(x+5)(x+5)(x+5)(x+5)			
				$\int (x) - (x + 3)(x)$	-)	<u>-</u>	
	(1-)		-1		1		
	(b)		• ¹ state range of	values	• ¹ $d > 9$		1
Not	es:						
Cor	mon		bserved Response	c.			
001			user ved Kesponse	3.			
L							

[END OF MARKING INSTRUCTIONS]

National Qualifications 2016

2016 Mathematics

Higher Paper 2

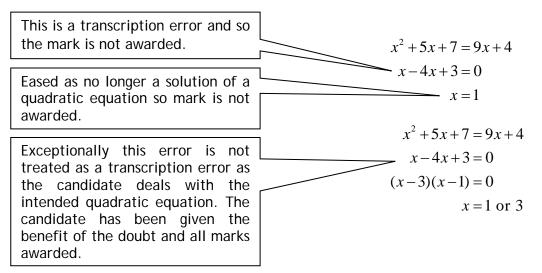
Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.


General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg (x³+2x²+3x+2)(2x+1) written as (x³+2x²+3x+2)×2x+1

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

For	exampl	e:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Specific Marking Instructions for each question

Q	Question		Generic Scheme	Illustrative Scheme	Max Mark			
1.	(a)	i	• ¹ state the midpoint M	• ¹ (2,4)	1			
		ii	• ² calculate gradient of median	• ² 4	2			
			• ³ determine equation of median	• ³ $y = 4x - 4$				
Not	Notes:							
			wailable as a consequence of using a y rearrangement of $y = 4x - 4$ for \bullet^3 .					
4.	 On this occasion, accept y-4=4(x-2) or y-(-4)=4(x-0); however, in future candidates should expect that the final equation will only be accepted when it involves a single constant term. •³ is only available as a consequence of using points M and P, or any other point which lies 							
			r example the midpoint $(1,0)$.					
Con	nmor	niy Oi	bserved Responses:					
	(b)		• ¹ calculate gradient of PR	• ¹ 1	3			
			• ² use property of perpendicular lines	• ² -1 stated or implied by • ⁶				
			• ³ determine equation of line	• ³ $y = -x + 6$				
Not	es:	<u> </u>						
6. 7.								

Questio	on Generic Scheme	Illustrative Scheme	Max Mark
Common	ly Observed Responses:		
Candidat	te A	Candidate B - BEWARE	
$m_{QR} = \frac{1}{4}$ $y = -4x$	• ⁴ × $m_{perp} = -4$ • ⁵ ✓1 +12 • ⁶ ✓1	$m_{PQ} = \frac{2 - (-4)}{-6 - 0} \qquad \bullet^{4} \land \\ \bullet^{5} \times \\ = -1 \\ y - 4 = -1(x - 2) \qquad \bullet^{6} \checkmark 2$	
		y = -x + 6 Note: • ⁴ • ⁵ and • ⁶ may still be availant any candidate that demonstrates that also perpendicular to PR.	
(c)		Method 1	3
	\bullet^1 find the midpoint of PR	• ¹ (5,1)	
	• ² substitute <i>x</i> -coordinate into equation of L.	• ² $y = -5 + 6 (1 = -x + 6)$	
	• ³ verify <i>y</i> -coordinate and communicate conclusion	• ³ $y = 1(x = 5)$: L passes through the midpoint of PR	
		Method 2	
	$ullet^7$ find the midpoint of PR	$\bullet^7 x + y = 6$ sub (5,1)	
	• ⁸ substitute <i>x</i> and <i>y</i> coordinates into the equation of L	• ⁸ 5+1=6	
	 verify the point satisfies the equation and communicate conclusion 	 •⁹ ∴ point (5,1) satisfies equation. 	
		Method 3	
	$ullet^7$ find the midpoint of PR	• ⁷ (5,1)	
	 ⁸ find equation of PR 	$\bullet^8 y = x - 4$	
	 ⁹ use simultaneous equations and communicate conclusion 	• ⁹ $y=1, x=5$ \therefore L passes through the midpoint of PR	

Question		Generic Scheme	Illustrative Scheme	Max Mark	
			Method 4		
		$ullet^7$ find the midpoint of PR	• ⁷ (5,1)		
		 ⁸ find equation of perpendicular bisector of PR 	• ⁸ $y-1 = -1(x-5) \to y = -x+6$		
		• ⁹ communicate conclusion	 ⁹ The equation of the perpendicular bisector is the same as L therefore L passes through the midpoint of PR. 		
Notes:					
 9. A relevant statement is required for •⁹ to be awarded. 10. Erroneous working accompanied by a statement such as "L does not pass through the midpoint." does NOT gain •⁹. 11. Beware of candidates substituting (1,5) instead of (5,1) 					
midp	oint.	" does NOT gain ● ⁹ .	t such as "L does not pass through the	2	
midp 11. Bewa 12. On th shou	ooint. are of his oc	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y pect that the final equation will only	t such as "L does not pass through the		
midp 11. Bewa 12. On th shou const	ooint. are of his oc Id exµ tant t	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y pect that the final equation will only	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On th shou const	point. are of his oc Id exp tant t nly O	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y pect that the final equation will only term.	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On th shou const Commor Candida	point. are of his oc Id exp tant t nly O nte C	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y bect that the final equation will only term. bserved Responses:	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On th shou const	point. are of his oc Id exp tant t nly O nte C d - poi	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y bect that the final equation will only term. bserved Responses:	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On the should construct construct Common Candida (5,1) mid y+x=6	ooint. are of his oc Id exp tant t nly Ol ite C d - poi	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y bect that the final equation will only term. bserved Responses: nt $\bullet^7 \checkmark$	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On th shou const Commor Candida (5,1) mid	ooint. are of his oc Id exp tant t nly Ol ite C d - poi	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y bect that the final equation will only term. bserved Responses: nt $\bullet^7 \checkmark$	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		
midp 11. Bewa 12. On the should construction Common Candida (5,1) mid y+x=6 Sub $(5,1)$ 5+1=6	ooint. are of his oc Id ex tant t nly O ite C d - poi 5)8	" does NOT gain \bullet^9 . candidates substituting $(1,5)$ instead casion, for Method 3, at \bullet^8 accept y bect that the final equation will only term. bserved Responses: nt $\bullet^7 \checkmark$	t such as "L does not pass through the of $(5,1)$ -1=1(x-5); however, in future canc		

Qu	Question		Generic	Scheme	Illust	rative Scheme	Max Mark
2.			 ¹ use the discrir ² simplify and a condition for r 	pply the	• $(-2)^2 - 4($ • $-2)^2 - 4($, , ,	3
			• ³ state range	10 1 201 1 0013	• ³ $p < 2$		
Note	es:						
2. 3. 4.	, , , , , , , , , , , , , , , , , , ,						
Com	nmon	ily Ol	oserved Response	s:			
Can	didat	te A			Candidate B		
(-2	$(-2)^{2}$	4(1)3	$B-p$ $\bullet^1 \checkmark$		$(-2)^2 - 4(1)(3-p) \bullet^1 \checkmark$		
-8-	+4p	< 0	●2 ✓		-8-4p<0 • ² ×		
<i>p</i> <	2		• ³ ✓		p > -2	● ³ √ 1	
Can	didat	te C			Candidate D - S	Special Case	
(-2	$()^{2} - 4$	4(1)3	$B-p \bullet^1 \mathbf{x}$		$b^2 - 4ac < 0$		
-8-	_ - p <	0	● ² ✓2	eased	$(-2)^2 - 4(1)(3-p) = 0$ • ¹ \checkmark		
<i>p</i> >			● ³ <mark>√</mark> 2 ∈		-8 + 4p = 0	• ² ✓	
					p=2		
					its application	● ³ <mark>√2</mark> since the condition (first (final line) and the of the discriminant all ap	-
Can	didat	te E		Candidate F		Candidate G	
	+4p					$-2^{2} - 4(1)(3 - p) = 0 \bullet$ -8 + 4 p = 0 p = 2	1 ✓ 2 × 3 ×

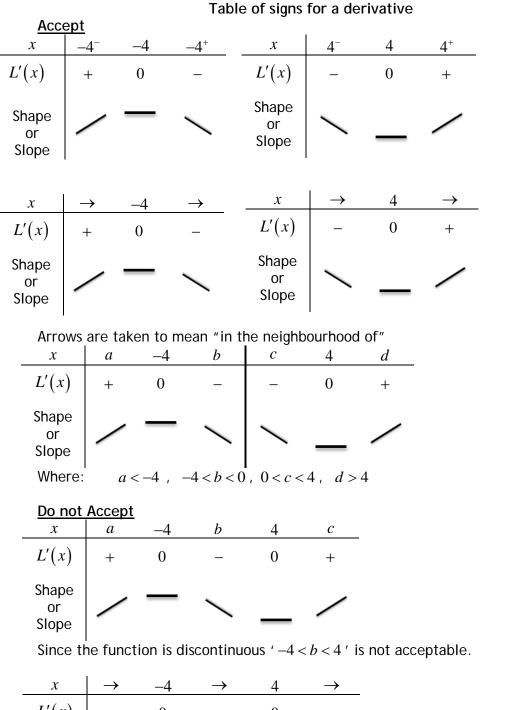
Q	Question		Generic Scheme	Illustrative Scheme	Max Mark
3.	(a)	i	 ¹ know to substitute x = -1 ² complete evaluation, interpret result and state conclusion 	Method 1 • $1 2(-1)^3 - 9 \times (-1)^2 + 3 \times (-1) + 14$ • $2 = 0 \therefore (x+1) \text{ is a factor}$	2
			 ¹ know to use x = -1 in synthetic division ² complete division, interpret result and state conclusion 	Method 2 • $^{1} -1 \begin{vmatrix} 2 & -9 & 3 & 14 \\ -2 & 2 & -11 \end{vmatrix}$ • $^{2} -1 \begin{vmatrix} 2 & -9 & 3 & 14 \\ -2 & 11 & -14 \\ 2 & -11 & 14 & 0 \end{vmatrix}$ remainder = $0 \therefore (x+1)$ is a factor	
			 ¹ start long division and find leading term in quotient ² complete division, interpret result and state conclusion 	Method 3 • 1 $2x^2$ $(x+1)$ $2x^3 - 9x^2 + 3x + 14$ • 2 $2x^2 - 11x + 14$ $(x+1)$ $2x^3 - 9x^2 + 3x + 14$ $2x^3 + 2x^2$ $-11x^2 + 3x$ $-11x^2 - 11x$ 14x + 14 14x + 14 14x + 14 0 remainder = 0 \therefore $(x+1)$ is a factor	

Question	Generic Scheme	Illustrative Scheme	Max Mark			
Notes:						
working r 2. Accept ar • ' j • 's • th	must arrive legitimately at 0 before only of the following for \bullet^2 : f(-1)=0 so $(x+1)$ is a factor' ince remainder = 0, it is a factor'	working at that stage ie a candidate's ² can be awarded. word 'factor' by eg 'so', 'hence', '', '	→',			
3. Do not ac • do • ' : ' (• th	Except any of the following for \bullet^2 : buble underlining the zero or boxing x = 1 is a factor', ' $(x-1)$ is a factor', (x+1) is a root' ne word 'factor' only with no link Observed Responses:					
ii	• ³ state quadratic factor	$\bullet^3 2x^2 - 11x + 14$	3			
	 ⁴ find remaining linear factors or substitute into quadratic formula 	• ⁴ (2x-7)(x-2) or $\frac{11\pm\sqrt{(-11)^2 - 4 \times 2 \times 14}}{2 \times 2}$				
	• ⁵ state solution	• $x = -1, 2, 3.5$				
Notes:						
	4. On this occasion, the appearance of "=0" is not required for \bullet^5 to be awarded. 5. Be aware that the solution, $x = -1$, 2, 3.5, may not appear until part (b).					
Commonly Observed Responses:						

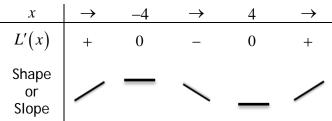
Qı	Question		Generic Scheme	Illustrative Scheme	Max Mark	
	(b)	(i)	• ⁶ state coordinates	• $(-1,0)$ and $(2,0)$	1	
Not	es:					
			' does not gain \bullet^6			
			= 0 and $x = 2, y = 0$ gains \bullet^6 bserved Responses:			
		1	- I	Γ		
		(ii)	 ⁷ know to integrate with respect to x 	• ⁷ $\int (2x^3 - 9x^2 + 3x + 14) dx$	4	
			● ⁸ integrate	• ⁸ $\frac{2x^4}{4} - \frac{9x^3}{3} + \frac{3x^2}{2} + 14x$		
			• ⁹ interpret limits and substitute	• $\left(\frac{2 \times 2^4}{4} - \frac{9 \times 2^3}{3} + \frac{3 \times 2^2}{2} + 14 \times 2\right)$		
				$-\left(\frac{2\times(-1)^4}{4} - \frac{9\times(-1)^3}{3} + \frac{3\times(-1)^2}{2} + \frac{3}{2}\right)$	$14 \times (-1)$	
			● ¹⁰ evaluate integral	• ¹⁰ 27		
			Candidate A			
			$\int \left(2x^3 - 9x^2 + 3x + 14\right) dx$	•7 🗸		
			$\frac{2x^4}{4} - \frac{9x^3}{3} + \frac{3x^2}{2} + 14x$	• ⁸ ✓		
			27	• ⁹ • 10 <u>1</u>		
			Candidate B			
			$\int \left(2x^3 - 9x^2 + 3x + 14\right) dx$		•7 🗸	
			$\frac{2x^4}{4} - \frac{9x^3}{3} + \frac{3x^2}{2} + 14x$			
			$\left(\frac{2 \times (-1)^4}{4} - \frac{9 \times (-1)^3}{3} + \frac{3 \times (-1)^2}{2} + 14 \times (-1)\right) - \left(\frac{2 \times 2^4}{4} - \frac{9 \times 2^3}{3} + \frac{3 \times 2^2}{2} + 14 \times 2\right) \bullet^9 \times -27, \text{ hence area is } 27 \qquad \bullet^{10} \checkmark 1$			
			However, $-27 = 27$	does not gain \bullet^{10} .		

Qı	Question		Generic Scheme	Illustrative Scheme	Max Mark	
			Candidate C	Candidate C		
			$\int = -27$ cannot be negative so =	27 • ¹⁰ ×		
			However, $\int \dots = -27$ so Area = $27 \bullet^{10}$) ✓		
Not	es:					
9. 10. 11. 12. 13.	 Notes: 8. •⁷ is not available to candidates who omit ' dx ' 9. Do not penalise the absence of brackets at the •⁷ stage 10. Where a candidate differentiates one or more terms at •⁸, then •⁸, •⁹ and •¹⁰ are not available. 11. Candidates who substitute limits without integrating do not gain •⁸, •⁹ or •¹⁰. 12. For candidates who make an error in (a), •⁹ is available only if the lower limit is negative and the upper limit is positive. 13. Do not penalise the inclusion of '+c'. 					
Con	nmon	ily Ob	oserved Responses:			

Question		n Generic Scheme	Illustrative Scheme	Max Mark		
4.	(a)	• ¹ centre of C_1	• ¹ (-5,6)	4		
		• ² radius of C_1	• ² 3			
		• ³ centre of C_2	• ³ (3,0)			
		\bullet^4 radius of C ₂	• ⁴ 5			
Not	es:					
Con	omon	y Observed Responses:				
CON		y observed responses.				
	(b)	• ⁵ calculate the distance between the centres	• ¹ 10	3		
		• ⁶ calculate the sum of the radii	• ² 8			
		• ⁷ interpret significance of	• ³ $8 < 10$ \therefore the circles do not			
		calculations	intersect			
Not	es:					
2. 3.	 For ●⁷ to be awarded a comparison must appear. Candidates who write ' r₁ + r₂ < D ', or similar, must have identified the value of r₁ + r₂ and the value of D somewhere in their solution for ●⁷ to be awarded. Where earlier errors lead to the candidate dealing with non-integer values, do not penalise inaccuracies in rounding unless they lead to an inconsistent conclusion. 					
		y Observed Responses:				


Que	Question		Generic Scheme	Illustrative Scheme	Max Mark
5.	(a)		• ¹ find \overrightarrow{AB}	$\bullet^1 \begin{pmatrix} -8\\ 16\\ 2 \end{pmatrix}$	2
			• ² find \overrightarrow{AC}		
Not	es:				
			dates who find both \overrightarrow{BA} and \overrightarrow{CA} co ctors written horizontally.	rrectly, only $ullet^2$ is available (repeated	error).
			bserved Responses:		
	(b)		Method 1	Method 1	4
			• ¹ evaluate \overrightarrow{AB} . \overrightarrow{AC}	• $\overrightarrow{AB}.\overrightarrow{AC} = 16 - 128 + 32 = -80$	
			\bullet^2 evaluate $\left \overrightarrow{AB}\right $ and $\left \overrightarrow{AC}\right $	• ² $\left \overrightarrow{AB} \right = \left \overrightarrow{AC} \right = 18$	
			• ³ use scalar product	• ³ cos BAC = $\frac{-80}{18 \times 18}$	
			• ⁴ calculate angle	• ⁴ $104 \cdot 3^{\circ}$ or $1 \cdot 82$ radians	
			Method 2	Method 2	
			• ³ calculate length of BC	\bullet^3 BC = $\sqrt{808}$	
			• ⁴ calculate lengths of AB and AC	• ⁴ AB = AC = 18	
			● ⁵ use cosine rule	• ⁵ cos BAC = $\frac{18^2 + 18^2 - \sqrt{808}^2}{2 \times 18 \times 18}$	
			• ⁶ calculate angle	• ⁶ 104·3° or 1·82 radians	

Question	Generic Scheme	Illustrative Scheme	Max Mark					
Notes:	Notes:							
3. Accept √	$\overline{324}$ at \bullet^4 and \bullet^5 .							
	available to candidates who simply sta							
However	$\cos\theta = \frac{-80}{18 \times 18}$ is acceptable. Similar	ly for Method 2.						
5. Accept co	rrect answers rounded to 104° or 1.8	radians.						
6. Due to \overline{A}	$\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{AC}}$ having equal magnitude, ($ullet^4$ is not available unless both $\left \overrightarrow{ m AB} ight $ a	nd $\left \overrightarrow{AC} \right $					
8. \bullet^6 is only	n stated. available as a result of using a valid s available for a single angle. rect answer with no working award 0/2							
Commonly O	bserved Responses:							
Candidate A								
$\overrightarrow{BA}.\overrightarrow{AC} = -16$	5+128-32=80							
$\left \overrightarrow{\mathbf{AB}} \right = \left \overrightarrow{\mathbf{AC}} \right = 1$	18 ● ⁴ ✓1							
$\cos\theta = \frac{80}{18 \times 18}$	$\cos\theta = \frac{80}{18 \times 18} \qquad \qquad \bullet^5 \checkmark 1$							
	• ⁶ ×							
75.70	or 1.32 radians							


Question		า	Generic Scheme	Illustrative Scheme	Max Mark
6.	(a)		• ¹ state the number	• ¹ 200	1
Not	es:				
0			harman di Dana anna a		
Con	nmor	niy O	bserved Responses:		
	(b)		• ² interpret context and form equation	• ² $2 = e^{0.107t}$	4
			 ³ knowing to use logarithms appropriately. 	• ³ $\ln 2 = \ln \left(e^{0.107t} \right)$	
			• ⁴ simplify	• ⁴ $\ln 2 = 0.107t$	
			• ⁵ evaluate t	• ⁵ $t = 6 \cdot 478$	
Not			$00 = 200e^{0.107t}$ or equivalent for \bullet^2		
 3. 4. 5. 6. 7. 	 ³ ma Acce At ●⁵ The α ⁵ to Cand Howe 	ay be pt t = igno calcu be a lidate ever,	warded. es who take an iterative approach to if, in the iterations, $B(t)$ is evaluat	tion of a logarithm within a valid strate	
Con	nmor	nly O	bserved Responses:		
	didat $e^{0.107t}$			Candidate B $t = 6.48$ hours $\bullet^5 \checkmark$	
			$_{0}(e^{0.107t})$ \bullet^{3} \checkmark	t = 6 hours 48 minutes	
	$log_{10} 2 = 0.107t log_{10} e$ • ⁴ \checkmark $t = 6.478$ • ⁵ \checkmark				
ln(2	,)·107	$t \qquad \bullet^4 \checkmark$	Candidate D $400 = 200e^{0.107t}$ • ²	
	0 1100	#10 N		$e^{0.107t} = 2 \qquad \qquad \bullet^3$ t = 6.48 hours $\checkmark 1 \bullet^4$	√1 ● ⁵

Qı	Question		Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)		 ¹ expression for length in term of x and y ² obtain an expression for y ³ demonstrate result 	s • ¹ 9x + 8y • ² $y = \frac{108}{6x}$ • ³ $L(x) = 9x + 8\left(\frac{108}{6x}\right)$ leading to $L(x) = 9x + \frac{144}{6x}$	3
Not	06.				
2.	For ca	andic	tution for y at \bullet^3 must be clearly sh dates who omit some, or all, of the oserved Responses:	own for \bullet^3 to be available. internal fencing, only \bullet^2 is available.	
	(b)		 ⁴ know to and start to differentiate ⁵ complete differentiation ⁶ set derivative equal to 0 ⁷ obtain for <i>x</i> ⁸ verify nature of stationary point ⁹ interpret and communicate result 	• ⁴ $L'(x) = 9$ • ⁵ $L'(x) = 9 - \frac{144}{x^2}$ • ⁶ $9 - \frac{144}{x^2} = 0$ • ⁷ $x = 4$ • ⁸ Table of signs for a derivative - see the additional page. • ⁹ Minimum at $x = 4$ or • ⁸ $L''(x) = \frac{288}{x^3}$ • ⁹ $L''(4) > 0 \therefore$ minimum Do not accept $\frac{d^2 y}{dx^2} =$	6

(Question	Generic Scheme	Illustrative Scheme	Max Mark			
No	otes:						
	 3. For candidates who integrate at the ●⁴ stage ●⁵, ●⁶, ●⁷, ●⁸ and ●⁹ are unavailable. 4. ●⁷, ●⁸ and ●⁹ are only available for working with a derivative which contains a term with an index ≤ -2. 						
5.	At \bullet^5 and	• accept $-144x^{-2}$.					
6.	$\sqrt{\frac{144}{9}}$ mu	st be simplified at the \bullet^7 , \bullet^8 or \bullet^9 sta	ge for \bullet^7 to be awarded.				
7. 8.	 e⁹ is not available to candidates who consider a value ≤0 in the neighbourhood of 4. A candidate's table of signs must be valid and legitimately lead to a minimum for e⁹ to be awarded. 						
9.	9. \bullet^9 is not available to candidates who state the minimum exists at a negative value of x.						
Со	Commonly Observed Responses:						

Here, for exemplification, tables of signs considering both roots separately have been displayed. However, in this question, it was only expected that candidates would consider the positive root for \bullet^8 . Do not penalise the consideration of the negative root.

Since the function is discontinuous ' $-4 \rightarrow 4$ ' is not acceptable.

General Comments

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of L'(x) in the table is an acceptable alternative to writing '+' or '-' signs.
- Acceptable alternatives for L'(x) are: $L' , \frac{dL}{dx}$ or $9 \frac{144}{x^2}$. DO NOT accept $\frac{dy}{dx}$ or f'(x).

Q	Question		Generic	Scheme	Illustr	ative Scheme	Max Mark
8.	(a)		 ¹ use compound ² compare coef 	Ū	• ¹ $k \cos x \cos a$ stated expl • ² $k \cos a = 5, k$ stated explicitly	icitly $k \sin a = 2$	4
			• ³ process for k		• ³ $k = \sqrt{29}$		
			• ⁴ process for <i>a</i> required form		• ⁴ $\sqrt{29}\cos(x-x)$	+0.38)	
Not	es:	I					
2. 3. 4. 5. 6. 7. 8.	k. $\sqrt{29}$ of Acception \bullet^2 is the \bullet^3 is of Candia Acception Acception k and k and	cos x ot k c not a only idate idate able ot an	$\cos a - \sqrt{29} \sin x \sin x \sin x \cos a = 5, -k \sin a = 5$ wailable for $k \cos x \sin a = 5$ available for a singles who work in deg	In <i>a</i> or $\sqrt{29} (\cos x)$ $= -2$ for \bullet^2 . $x = 5$, $k \sin x = 2$, 1 gle value of k , $k > 2$ grees and do not of m of the wave eco s interpreted in the at rounds to 0.3	$a\cos a - \sin x \sin a$ however, \bullet^4 is still > 0. convert to radian quation for \bullet^1 , \bullet^2 the form $k\cos(x + 8)$.	measure do not gain and \bullet^3 , however, \bullet^4	and \bullet^3 .
Con	nmon	ly Ol	bserved Response	es:			
Res	ponse	es wi	ith missing inform	nation in working	g:		
$\sqrt{29}$ $\sqrt{29}$ tan	Candidate A $\sqrt{29}\cos a = 5$ $e^2 \checkmark$ $\sqrt{29}\sin a = 2$ $e^3 \checkmark$				Candidate B $k \cos x \cos a - k \sin x \sin a \bullet^1 \checkmark$ $\cos a = 5$ $\sin a = 2 \qquad \bullet^2 \times$ $\bullet^3 \checkmark$ $\tan a = \frac{2}{5}$ $a = 0.38 \qquad \text{Not consistent}$ with equations $at \bullet^2$. $\sqrt{29} \cos(x + 0.38) \qquad \bullet^4 \times$		
Res	ponse	es wi	ith the correct ex	pansion of kcos	(x+a) but errors	s for either \bullet^2 or \bullet^4 .	
Can	Candidate C Candidate D			Candidate E			
tan	$\cos a = 5, k \sin a = 2 \bullet^2 \checkmark$ $k \cos a = 2, k \sin a = 1, k \sin a = \frac{5}{2}, a = 1$ $\sqrt{29} \cos(x + 1)$			$\tan a = \frac{-2}{5}$			

Question Generic S		Scheme	Illustrative Scheme		Max Mark	
Responses w	ith the incorrect I	abelling; $k\cos A$	$\cos B - k \sin A \sin A$	in B from formula list.		
Candidate F		Candidate G		Candidate H		
	$in a = 2 \qquad e^2 \checkmark$		= 2 ● ² ¥ 3805	$k \cos A \cos B - k \sin A \sin \frac{\pi}{2}$ $k \cos B = 5, k \sin B = 2 \bullet \frac{\pi}{2}$ $\tan B = \frac{2}{5}, B = 0.3805.$ $\sqrt{29} \cos(x + 0.38) \bullet \frac{3}{2}$	² √ 1	
(b)			• $5 \cos x - 2\sin 5\cos 5\cos x - 2\sin 5\cos $		4	
	• ⁷ solve for $x + a$ • ⁸ solve for x	ı	• ⁷ • ⁷ 1·1902, • ⁸ 0·8097,			
Notes:						

10. The values of x may be given in radians or degrees.

11. Do not penalise candidates who attribute the values of x to the wrong points.

12. Accept any answers, in degrees or radians, that round correct to one decimal place.

13. •⁴ is unavailable for candidates who give their answer in degrees in part (a) and in part (b).
•⁴ is unavailable for candidates who give their answer in degrees in part (a) and radians in part (b).
•⁸ is unavailable for candidates who give their answer in radians in part (a) and degrees in part (b).

Conversion Table:

Degrees	Radians		
21.8	0.3805		
46.4	0.8097		
68.2	1.190		
270	4.712 or $\frac{3\pi}{2}$		
291.8	5.0928		
Commonly Observed Responses:			

Question		Generic Scheme		Illustrative Sche	eme Max Mark	
9.		• ¹ write in i	ntegrable form	• $2x^{\frac{1}{2}} + x^{\frac{1}{2}}$	4	
		• ² integrate	one term	• ² $\frac{4}{3}x^{\frac{3}{2}}$ or $2x^{\frac{1}{2}}$		
		• ³ complete	integration	• $3 2x^{\frac{1}{2}} + c \text{ or } \frac{4}{3}x^{\frac{3}{2}} + c$		
		• ⁴ state exp	ression for $f(x)$	• $f(x) = \frac{4}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} - 2$	2	
Not	es:					
1.	For canc	idates who do	not attempt to write	f'(x) as the sum of two in	ntegrable terms,	
	award 0					
				erms involving fractional in		
			•° must have an inde	x of opposite sign to that o	of the term	
	integrate		ferentiate one term (only \bullet^1 and \bullet^2 are available		
			ferentiate both terms			
			$=\frac{4}{3}x^{\frac{3}{2}}+2x^{\frac{1}{2}}+c, \ c=-$			
			fy coefficients in <u>thei</u> of working to be awar	<u>r</u> final line of working for t ded.	the last mark	
Cor	nmonly	Observed Resp	onses:			
Car	ndidate A	۱.		Candidate B		
	(x) = 2x	$+x^{-\frac{1}{2}}$	• ¹ ×	$f'(x) = 2x + x^{\frac{1}{2}}$	• ¹ ×	
x^2 -	$+2x^{\frac{1}{2}}+c$		$\bullet^2 \checkmark \bullet^3 \checkmark 2$	$x^{2} + 2x^{\frac{1}{2}}$	$\bullet^2 \checkmark \bullet^3 \varkappa$	
$f(x) = x^2 + 2x^{\frac{1}{2}} - 47$ • ⁴ 1			• ⁴ 1	$f\left(x\right) = x^2 + 2x^{\frac{1}{2}}$	• ⁴ ^	
Candidate C Candidate D						
	$(x) = 2x^{\frac{1}{2}}$	+1	• ¹ ×	$f'(x) = \frac{2x+1}{x^{\frac{1}{2}}}$	•1 ^	
5	$x^{\frac{3}{2}} + x + c$		$\bullet^2 \checkmark \bullet^3 \checkmark 2$	$\frac{x^2 + x}{2x^{\frac{3}{2}}} + c$	$\bullet^2 \times \bullet^3 \times \bullet^4 \times$	
f($x\big) = \frac{4}{3}x^{\frac{3}{2}}$	+x-5	• ⁴ 1	$2x^{\overline{2}}$ $f(x) = \frac{x^2 + x}{2x^{\frac{3}{2}}} + \frac{115}{3}$	See Note 1	

Question	Generic Scheme	Illustrative Scheme	Max Mark				
Candidate E							
$f'(x) = 2x^{\frac{1}{2}}$	$+x^{\frac{1}{2}}$ $\bullet^{1}\checkmark$						
$=\frac{2x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+$	c $\bullet^2 \checkmark$						
	• ³ √2 • ⁴ ^						
10. (a)	• ¹ Start to differentiate	• $\frac{1}{2}(x^2+7)^{-\frac{1}{2}}$	2				
	• ² Complete differentiation	$\bullet^2 \dots \times 2x$	1				
Notes:							
	ccasion there is no requirement to si	mplify coefficients.					
Commonly O	bserved Responses:						
(b)	\bullet^3 link to (a) and integrate	• $4(x^2+7)^{\frac{1}{2}}(+c)$	1				
Notes:							
2. A candida	te's answer at \bullet^3 must be consisten	t with earlier working.					
Commonly O	bserved Responses:						
Candidate A							
$\int 4x(x^2+7)^{-\frac{1}{2}}dx$							
$=\frac{4x(x^2+7)^{\frac{1}{2}}}{\frac{1}{2}\times 2x}+c$							
$=\frac{4x(x^2+7)^{\frac{1}{2}}}{x}$	$=\frac{4x(x^2+7)^{\frac{1}{2}}}{x}+c$						
$=4(x^2+7)^{\frac{1}{2}}+$	$=4(x^{2}+7)^{\frac{1}{2}}+c$ \bullet^{3} ×						

Que	Question		Generic Scheme	Illustrative Scheme	Max Mark			
11.	(a)		• ¹ substitute for $\sin 2x$ and $\tan x$	• ¹ $(2\sin x \cos x) \times \frac{\sin x}{\cos x}$	4			
			• ² simplify	• ² $2\sin^2 x$				
			• ³ use an appropriate substitution	• ³ $2(1-\cos^2 x)$ or $1-(1-2\sin^2 x)$				
			 ⁴ simplify and communicate result 	$ \begin{array}{c} 1 - (1 - 2\sin^2 x) \\ \bullet^4 1 - \cos 2x = 1 - \cos 2x \\ \text{or} \\ 2\sin^2 x = 2\sin^2 x \\ \therefore \text{Identity shown} \end{array} $				
Not	es:							
2. 3.	 ●¹ is not available to candidates who simply quote sin 2x = 2 sin x cos x and tan x = sin x/cos x without substituting into the identity. ●⁴ is not available to candidates who work throughout with A in place of x. ●³ is not available to candidates who simply quote cos 2x = 1-2 sin² x without substituting into the identity. On this occasion, at ●⁴ do not penalise the omission of 'LHS = RHS' or a similar statement. 							
Con	nmon	ly O	bserved Responses:					
Candidate A $\sin 2x \tan x = 1 - \cos 2x$ $2 \sin x \cos x \times \frac{\sin x}{\cos x} = 1 - \cos 2x$ $2 \sin^2 x = 1 - \cos 2x$ $2 \sin^2 x - 1 = -\cos 2x$ $-(1 - 2\sin^2 x) = -\cos 2x$ $-\cos 2x = -\cos 2x$			$\frac{1 - \cos 2x}{\sin x} = 1 - \cos 2x \qquad \bullet^{1} \checkmark$ $\cos 2x \qquad \bullet^{2} \checkmark$ $-\cos 2x \qquad \bullet^{3} \times \bullet^{4} \times$ $x) = -\cos 2x$	Candidate B $\sin 2x \tan x = 1 - \cos 2x$ $\sin 2x \tan x = 1 - (1 - 2\sin^2 x)$ $\sin 2x \tan x = 2\sin^2 x$ $\tan x = \frac{2\sin^2 x}{2\sin x \cos x}$ $\tan x = \tan x$				
with of w	In proving the identity, candidates must work with both sides independently. ie in each line of working the LHS must be equivalent to the left hand side of the line above.							

Question		Generic Scheme	Illustrative Scheme	Max Mark
(b)		 ⁵ link to (a) and substitute ⁶ differentiate 	• ⁵ $f(x) = 1 - \cos 2x$ or $f(x) = 2\sin^2 x$ • ⁶ $f'(x) = 2\sin 2x$ or $f'(x) = 4\sin x \cos x$	2
Notes: Common	ly Ol	oserved Responses:		

[END OF MARKING INSTRUCTIONS]