

Perth Academy

Mathematics Department

Higher

Key Points

Exponential and Log Functions

Exponential and Log Functions

A function of the form $y = a^x$ is called an **exponential function** to the base $a, a \neq 0$. $f(x) = 2.718^x = e^x$ is called the exponential function to the base e.

4 The graph of $y = \log_a x$

- cuts the x-axis at (1, 0)
- passes through (a, 1).

- 5 If $y = a^x$ then $x = \log_a y$ If $y = \log_a x$ then $x = a^y$
- $6 \quad \log_a xy = \log_a x + \log_a y$
- $\log_a \frac{x}{y} = \log_a x \log_a y$
- $8 \quad \log_a x^n = n \log_a x$
- 9 $\log_e x = \ln x$
- **10** If $y = kx^n$ then $\log y = n \log x + \log k$. This is a linear equation. Hence, if the graph of $\log y$ against $\log x$ is a straight line, then the formula is of type $y = kx^n$. The straight line graph may be used to determine k and n.

Example 1

Simplify (a) $\log_4 64$ (b) $\log_4 16 + \log_4 8 - \log_4 32$ (c) $\frac{1}{3}\log_9 27$

Solution

(a) Since
$$4^{3} = 64$$

 $\log_{4} 64 = \log_{4} 4^{3} = 3$
(b) $\log_{4} 16 + \log_{4} 8 - \log_{4} 32 = \log_{4} \left(\frac{16 \times 8}{32}\right)$
 $= \log_{4} 4$
 $= 1$
(c) $\frac{1}{3}\log_{9} 27 = \log_{9} (27^{\frac{1}{3}})$
 $= \log_{9} 3$
 $= \log_{9} 9^{\frac{1}{2}}$
 $= \frac{1}{2}$

Example 2

Given $3^x = 10$, find an expression for the exact value of x.

Solution

 $3^{x} = 10$ $\log_{10} (3^{x}) = \log_{10} 10$ $x \log_{10} 3 = 1$ $x = \frac{1}{\log_{10} 3}$

Example 3

Given that $\log_{10} y = 3.4$, write down an expression for the exact value of *y*.

Solution

 $y = 10^{3.4}$

Example 4

Solve, for x > 0, $\log_7 (x^2 - 1) - \log_7 (x - 1) = 2$.

Solution

 $\log_7 (x^2 - 1) - \log_7 (x - 1) = 2$

$$\log_{7} \frac{(x^{2} - 1)}{(x - 1)} = \log_{7} 49$$

$$\frac{x^{2} - 1}{x - 1} = 49$$
notice that

$$\log_{7} 49 = \log_{7} 7^{2} = 2$$

$$\frac{(x + 1)(x - 1)}{x - 1} = 49$$

$$x + 1 = 49$$

$$x = 48$$

Example 5

The air pressure in a life raft falls according to the formula $P_t = P_0 e^{-kt}$, where P_0 is the initial pressure, P_t is the pressure at time *t* hours and *k* is a constant.

- (a) At time zero the pressure is 80 units. 12 hours later it is 60 units. Find the value of k to two significant figures.
- (b) When the pressure is below 40 units the raft is unsafe. From time zero, for how long is the raft safe to use?

Solution

(a) $P_t = P_0 e^{-kt}$ $60 = 80e^{-k(12)}$ $e^{-12k} = 0.75$ $\ln e^{-12k} = \ln 0.75$ -12k = -0.288 k = 0.02(b) $P_t = P_0 e^{-0.02t}$ $40 = 80e^{-0.02t}$ $e^{-0.02t} = 0.5$ $\ln e^{-0.02t} = \ln 0.5$ -0.02t = -0.693t = 34.7 h or 34 h 42 min

Example 6

From the experimental data given in the table:

- (a) show that *x* and *y* are related by the formula $y = kx^n$
- (b) find the value of *k* and *n*, and state the formula that connects *x* and *y*.

Solution

(a) Taking logarithms to base 10 of x and y gives:

These points lie on a straight line. Hence, the formula connecting x and y is of the form $y = kx^n$.

(b) Taking two points on the line Y = nX + C, $Y = \log_{10} y, X = \log_{10} x$ and $C = \log_{10} k$. Y = nX + C 0.61 = n1.3 + C0.82 = n1.6 + C

Solving simultaneously gives n = 0.7 and C = -0.3. Hence k = 0.5 and $y = 0.5x^{0.7}$

x	10.1	19.9	31	39.5
у	2.5	4.1	5.5	6.6

$\log_{10} x$	1.0	1.3	1.5	1.6
$\log_{10} y$	0.40	0.61	0.74	0.82

Example 7

Part of the graph of $y = 3 \log_4 (4x + 2)$ is shown in the diagram. The graph crosses the *x*-axis at the point A and crosses the straight line y = 6 at the point B. Find the *x*-coordinate of B.

Solution

 $y = 3 \log_4 (4x + 2)$ At y = 6, y = 3 log₄ (4x + 2) = 6 log₄ (4x + 2) = 2 4x + 2 = 4² 4x = 14 x = $\frac{7}{2}$

