

Perth Academy

Mathematics Department

Higher

Key Points

Exponential and Log Functions

Exponential and Log Functions

1 For $y=a^{x}, a>1$, the graph

- is always positive
- never crosses the x-axis
- is increasing
- passes through $(0,1)$.

2 For $y=a^{x}, 0<a<1$, the graph

- is always positive
- never crosses the x-axis
- is decreasing
- passes through $(0,1)$.

3 A function of the form $y=a^{x}$ is called an exponential function to the base $a, a=\neq 0$. $\mathrm{f}(x)=2.718^{x}=\mathrm{e}^{x}$ is called the exponential function to the base e .

4 The graph of $y=\log _{a} x$

- cuts the x-axis at $(1,0)$
- passes through $(\mathrm{a}, 1)$.

5 If $y=a^{x}$ then $x=\log _{a} y$
If $y=\log _{a} x$ then $x=a^{y}$
$6 \log _{a} x y=\log _{a} x+\log _{a} y$
$7 \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
$8 \log _{a} x^{n}=n \log _{a} x$
$9 \log _{e} x=\ln x$
10 If $y=k x^{n}$ then $\log y=n \log x+\log k$.
This is a linear equation. Hence, if the graph of $\log y$ against $\log x$ is a straight line, then the formula is of type $y=k x^{n}$. The straight line graph may be used to determine k and n.

Example 1

Simplify
(a) $\log _{4} 64$
(b) $\log _{4} 16+\log _{4} 8-\log _{4} 32$
(c) $\frac{1}{3} \log _{9} 27$

Solution

(a). Since $\quad 4^{3}=64$

$$
\log _{4} 64=\log _{4} 4^{3}=3
$$

(b) $\log _{4} 16+\log _{4} 8-\log _{4} 32=\log _{4}\left(\frac{16 \times 8}{32}\right)$

$$
=\log _{4} 4
$$

(c) $\frac{1}{3} \log _{9} 27=\log _{9}\left(27^{\frac{1}{3}}\right)$

$$
\begin{aligned}
& =\log _{9} 3 \\
& =\log _{9} 9^{\frac{1}{2}} \\
& =\frac{1}{2}
\end{aligned}
$$

Example 2

Given $3^{x}=10$, find an expression for the exact value of x.

Solution

$$
3^{x}=10
$$

$\log _{10}\left(3^{x}\right)=\log _{10} 10$
$x \log _{10} 3=1$

$$
x=\frac{1}{\log _{10} 3}
$$

Example 3

Given that $\log _{10} y=3.4$, write down an expression for the exact value of y.

Solution

$y=10^{3.4}$

Example 4

Solve, for $x>0, \log _{7}\left(x^{2}-1\right)-\log _{7}(x-1)=2$.
Solution

$$
\begin{aligned}
\log _{7}\left(x^{2}-1\right)-\log _{7}(x-1) & =2 \\
\log _{7} \frac{\left(x^{2}-1\right)}{(x-1)} & =\log _{7} 49 \\
\frac{x^{2}-1}{x-1} & =49 \\
\frac{(x+1)(x-1)}{x-1} & =49 \\
x+1 & =49 \\
x & =48
\end{aligned}
$$

Example 5

The air pressure in a life raft falls according to the formula $P_{t}=\mathrm{P}_{0} \mathrm{e}^{-k t}$, where P_{0} is the initial pressure, P_{t} is the pressure at time t hours and k is a constant.
(a) At time zero the pressure is 80 units. 12 hours later it is 60 units. Find the value of k to two significant figures.
(b) When the pressure is below 40 units the raft is unsafe. From time zero, for how long is the raft safe to use?

Solution

(a) $\quad P_{t}=P_{0} \mathrm{e}^{-k t}$

$$
60=80 \mathrm{e}^{-k(12)}
$$

$$
\mathrm{e}^{-12 k}=0.75
$$

$\ln \mathrm{e}^{-12 k}=\ln 0.75$

$$
\begin{aligned}
-12 k & =-0.288 \\
k & =0.02
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{P}_{t} & =P_{0} \mathrm{e}^{-0.02 t} \\
40 & =80 \mathrm{e}^{-0.02 t} \\
\mathrm{e}^{-0.02 t} & =0.5 \\
\ln \mathrm{e}^{-0.02 t} & =\ln 0.5 \\
-0.02 t & =-0.693 \\
t & =34.7 \mathrm{~h} \text { or } 34 \mathrm{~h} 42 \mathrm{~min}
\end{aligned}
$$

Example 6

From the experimental data given in the table:
(a) show that x and y are related by the formula $y=k x^{n}$
(b) find the value of k and n, and state the

x	10.1	19.9	31	39.5
y	2.5	4.1	5.5	6.6

Solution

(a) Taking logarithms to base 10 of x and y gives:

$\log _{10} x$	1.0	1.3	1.5	1.6
$\log _{10} y$	0.40	0.61	0.74	0.82

These points lie on a straight line.
Hence, the formula connecting x and y is of the form $y=k x^{n}$.
(b) Taking two points on the line $Y=n X+C$,
$Y=\log _{10} y, X=\log _{10} x$ and $\mathrm{C}=\log _{10} k$.

$$
Y=n X+C
$$

$0.61=n 1.3+C$
$0.82=n 1.6+C$
Solving simultaneously gives $n=0.7$ and $C=-0.3$.
Hence $k=0.5$ and $y=0.5 x^{0.7}$

Example 7

Part of the graph of $y=3 \log _{4}(4 x+2)$ is shown in the diagram. The graph crosses the x-axis at the point A and crosses the straight line $y=6$ at the point B .
Find the x-coordinate of B.

Solution

$$
\begin{aligned}
& y=3 \log _{4}(4 x+2) \\
& \text { At } y=6, \quad y=3 \log _{4}(4 x+2)
\end{aligned}=69 \begin{aligned}
\log _{4}(4 x+2) & =2 \\
4 x+2 & =4^{2} \\
4 x & =14 \\
x & =\frac{7}{2}
\end{aligned}
$$

