

Perth Academy

Mathematics Department

Higher

Key Points

Further Calculus

Further Calculus

3 The chain rule:

If
$$h(x) = f(g(x))$$
 then $h'(x) = f'(g(x)).g'(x)$ or $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int \cos(ax + b) \, dx = \frac{1}{a} \sin(ax + b) + C$$
$$\int \sin(ax + b) \, dx = -\frac{1}{a} \cos(ax + b) + C$$

Example 1

Differentiate $2 \cos x + \frac{2}{3} \sin x$ with respect to x.

Solution

$$f(x) = 2\cos x + \frac{2}{3}\sin x$$

$$f'(x) = 2(-\sin x) + \frac{2}{3}\cos x$$

$$= -2\sin x + \frac{2}{3}\cos x$$

Example 2

Given that $f(x) = (x^2 + 3)^8$ find f'(x).

Solution

$$f(x) = (x^2 + 3)^8$$

$$f'(x) = 8(x^2 + 3)^7 \times 2x$$

$$= 16x(x^2 + 3)^7$$

Example 3

Find
$$\int 3 \sin x - \frac{1}{2} \cos x \, dx.$$

Solution

$$\int 3 \sin x - \frac{1}{2} \cos x \, dx = 3 \times (-\cos x) - \frac{1}{2} \sin x + C$$
$$= -3 \cos x - \frac{1}{2} \sin x + C$$

Example 4

Evaluate
$$\int_{1}^{2} (2x + 1)^{3} dx.$$

Solution

$$\int_{1}^{2} (2x+1)^{3} dx = \left[\frac{(2x+1)^{4}}{4 \times 2} \right]_{1}^{2}$$

$$= \left[\frac{1}{8} (2x+1)^{4} \right]_{1}^{2}$$

$$= \frac{1}{8} ((2 \times 2 + 1)^{4} - (2 \times 1 + 1)^{4})$$

$$= \frac{1}{8} (625 - 81)$$

$$= 68$$

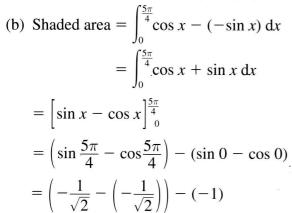
Example 5

The diagram shows the graphs of $y = -\sin x$ and $y = \cos x$.

- (a) Find the coordinates of A.
- (b) Hence find the shaded area.

Solution

(a) Solve simultaneously
$$y = -\sin x$$
 and $y = \cos x$
 $-\sin x = \cos x$

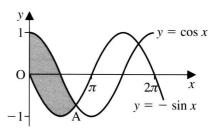

$$\frac{-\sin x}{\cos x} = 1$$

$$\tan x = -1$$

$$x = \frac{5\pi}{4} \quad \text{or} \quad \frac{7\pi}{4}$$

when
$$x = \frac{5\pi}{4}$$
, $y = \frac{-1}{\sqrt{2}}$

The coordinates of A are $\left(\frac{5\pi}{4}, \frac{-1}{\sqrt{2}}\right)$



Example 6

Find
$$\int \sin 2x - \cos(3x - \frac{\pi}{4}) dx$$
.

Solution

$$\int \sin 2x - \cos(3x - \frac{\pi}{4}) \, dx = -\frac{1}{2}\cos 2x - \frac{1}{3}\sin(3x - \frac{\pi}{4}) + C$$

