

Perth Academy

Mathematics Department

Higher

Key Points

The Circle

The Circle

The distance between (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. This is known as the **distance formula**.

2 The equation of a circle with centre (0, 0) and radius r is $x^2 + y^2 = r^2$.

3 The equation of a circle with centre (a, b) and radius r is $(x - a)^2 + (y - b)^2 = r^2$.

4 $x^2 + y^2 + 2gx + 2fy + c = 0$ (where g, f and c are constants) is the **general equation** of a circle with centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$, provided $g^2 + f^2 - c > 0$.

A straight line and a circle may have two, one or no points of intersection. Tangency can be determined by solving the linear and circle equations simultaneously and considering the discriminant.

If $b^2 - 4ac = 0$ the line is a tangent.

The equation of a tangent at a point on a circle can be found from its gradient and the coordinates of the point of contact using the relationship $m_{\text{rad}} \times m_{\text{tan}} = -1$.

Example 1

Find the equation of a circle with centre C(5, -2) and passing through the point D(1, -5).

Solution

Length of radius = CD =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= CD = $\sqrt{(1 - 5)^2 + (-5 - (-2))^2}$
= CD = $\sqrt{16 + 9}$
= CD = 5

Equation of circle is
$$(x - 5)^2 + (y - (-2))^2 = 5^2$$

 $(x - 5)^2 + (y + 2)^2 = 25$

Example 2

Find the radius and the centre of the circle with equation $x^2 + y^2 + 2x - 6y + 1 = 0$.

Solution

From the general equation of a circle $x^2 + y^2 + 2gx + 2fy + c = 0$

$$2g = 2$$
 therefore $g = 1$
 $2f = -6$ therefore $f = -3$

The centre of the circle is (-g, -f), that is (-1, 3)

The radius of the circle =
$$\sqrt{g^2 + f^2 - c}$$

= $\sqrt{1^2 + (-3)^2 - 1}$
= $\sqrt{9}$
= 3

Example 3

- (a) Show that the straight line with equation y = -3x + 6 is a tangent to the circle with equation $x^2 + y^2 + 10x 2y 14 = 0$.
- (b) Find the point of contact.

$$x^{2} + (-3x + 6)^{2} + 10x - 2(-3x + 6) - 14 = 0$$

$$x^{2} + 9x^{2} - 36x + 36 + 10x + 6x - 12 - 14 = 0$$

$$10x^2 - 20x + 10 = 0$$

To examine the roots of this quadratic find the discriminant.

$$b^{2} - 4ac = (-20)^{2} - 4 \times 10 \times 10$$
$$= 400 - 400$$
$$= 0$$

Since the discriminant is zero the roots are equal. There is only one point of intersection. The line is a tangent to the circle.

(b) Solving the equation
$$10x^2 - 20x + 10 = 0$$

$$10(x-1)(x-1) = 0$$

The quadratic has equal roots with x = 1

$$y = -3 \times 1 + 6$$
$$y = 3$$

The point of contact is (1, 3).

Example 4

The point A(1, 8) lies on the circle with equation $x^{2} + y^{2} + 8x + 4y - 105 = 0$. Find the equation of the tangent at A.

Solution

The centre of circle

$$x^2 + y^2 + 8x + 4y - 105 = 0$$
 is $C(-4, -2)$.

$$m_{\text{CA}} = \frac{8 - (-2)}{1 - (-4)} = \frac{10}{5} = 2$$

Since the tangent is perpendicular to the radius,

$$m_{\text{tan}} \times m_{\text{rad}} = -1$$

So $m_{\text{tan}} = -\frac{1}{2}$

So
$$m_{\text{tan}} = -\frac{1}{2}$$

Equation of tangent at A is $y - 8 = -\frac{1}{2}(x - 1)$

$$2y - 16 = -x + 1$$

$$x + 2y - 17 = 0$$

