

Perth Academy

Mathematics Department

Higher

Key Points

The Circle

The Circle

1 The distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. This is known as the distance formula.

2 The equation of a circle with centre $(0,0)$ and radius r is $x^{2}+y^{2}=r^{2}$.
3 The equation of a circle with centre (a, b) and radius r is $(x-a)^{2}+(y-b)^{2}=r^{2}$.
$4 x^{2}+y^{2}+2 g x+2 f y+c=0$ (where g, f and c are constants) is the general equation of a circle with centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$, provided $g^{2}+f^{2}-c>0$.

5 A straight line and a circle may have two, one or no points of intersection. Tangency can be determined by solving the linear and circle equations simultaneously and considering the discriminant.
If $b^{2}-4 a c=0$ the line is a tangent.

6 The equation of a tangent at a point on a circle can be found from its gradient and the coordinates of the point of contact using the relationship $m_{\mathrm{rad}} \times m_{\mathrm{tan}}=-1$.

Example 1

Find the equation of a circle with centre $\mathrm{C}(5,-2)$ and passing through the point $\mathrm{D}(1,-5)$.

Solution

Length of radius $=\mathrm{CD}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\mathrm{CD}=\sqrt{(1-5)^{2}+(-5-(-2))^{2}} \\
& =\mathrm{CD}=\sqrt{16+9} \\
& =\mathrm{CD}=5
\end{aligned}
$$

Equation of circle is $(x-5)^{2}+(y-(-2))^{2}=5^{2}$

$$
(x-5)^{2}+(y+2)^{2}=25
$$

Example 2

Find the radius and the centre of the circle with equation
$x^{2}+y^{2}+2 x-6 y+1=0$.

Solution

From the general equation of a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$
$2 g=2 \quad$ therefore
$g=1$
$2 f=-6 \quad$ therefore $f=-3$
$c=1$
The centre of the circle is $(-g,-f)$, that is $(-1,3)$
The radius of the circle $=\sqrt{g^{2}+f^{2}-\mathrm{c}}$

$$
\begin{aligned}
& =\sqrt{1^{2}+(-3)^{2}-1} \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

Example 3

(a) Show that the straight line with equation $y=-3 x+6$ is a tangent to the circle with equation $x^{2}+y^{2}+10 x-2 y-14=0$.
(b) Find the point of contact.

Solution

(a) Substitute $(-3 x+6)$ for y in the circle equation.
$x^{2}+(-3 x+6)^{2}+10 x-2(-3 x+6)-14=0$
$x^{2}+9 x^{2}-36 x+36+10 x+6 x-12-14=0$

$10 x^{2}-20 x+10=0$
To examine the roots of this quadratic find the discriminant.

$$
\begin{aligned}
b^{2}-4 a c & =(-20)^{2}-4 \times 10 \times 10 \\
& =400-400 \\
& =0
\end{aligned}
$$

Since the discriminant is zero the roots are equal. There is only one point of intersection. The line is a tangent to the circle.
(b) Solving the equation $10 x^{2}-20 x+10=0$

$$
10(x-1)(x-1)=0
$$

The quadratic has equal roots with $x=1$

$$
\begin{aligned}
& y=-3 \times 1+6 \\
& y=3
\end{aligned}
$$

The point of contact is $(1,3)$.

Example 4

The point $\mathrm{A}(1,8)$ lies on the circle with equation $x^{2}+y^{2}+8 x+4 y-105=0$. Find the equation of the tangent at A.

Solution

The centre of circle
$x^{2}+y^{2}+8 x+4 y-105=0$ is $\mathrm{C}(-4,-2)$.
$m_{\mathrm{CA}}=\frac{8-(-2)}{1-(-4)}=\frac{10}{5}=2$
Since the tangent is perpendicular to the radius,

$m_{\text {tan }} \times m_{\text {rad }}=-1$
So $m_{\mathrm{tan}}=-\frac{1}{2}$
Equation of tangent at A is $y-8=-\frac{1}{2}(x-1)$

$$
\begin{aligned}
& 2 y-16=-x+1 \\
& x+2 y-17=0
\end{aligned}
$$

