

Perth Academy

Mathematics Department

Higher

Key Points

Addition Formulae

Addition Formulae

$$2 \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

3
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

4
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

6
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

= $2\cos^2 \alpha - 1$
= $1 - 2\sin^2 \alpha$

$$7 \cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha)$$

$$8 \sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha)$$

Example 1

Solve algebraically $2 \sin 2x^{\circ} + 1 = 0$ where $0 \le x \le 360$.

Solution

$$2\sin 2x^\circ + 1 = 0$$

$$2\sin 2x^{\circ} = -1$$

$$\sin 2x^{\circ} = -\frac{1}{2}$$

Since $\sin 2x^{\circ}$ is negative the solutions are in the third and fourth quadrants.

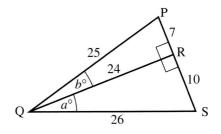
Also, since
$$0 \le x \le 360$$
 then $0 \le 2x \le 720$
 $2x = 210$ or 330 or $(210 + 360)$ or $(330 + 360)$
 $x = 105$ or 165 or 295 or 345

Example 2

The diagram shows the cross-section of an adjustable ramp which is made from two right-angled triangles, PQR and RQS. Angle RQS = a° and PQR = b° .

(a) Find the exact value of $\sin (a + b)^{\circ}$.

- (b) Hence calculate the height of the ramp.



Solution

(a)
$$\sin (a + b)^{\circ} = \sin a^{\circ} \cos b^{\circ} + \cos a^{\circ} \sin b^{\circ}$$

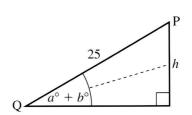
$$= \frac{10}{26} \times \frac{24}{25} + \frac{24}{26} \times \frac{7}{25}$$

$$= \frac{240 + 168}{650}$$

$$= \frac{408}{650}$$

(b)
$$\sin (a + b)^{\circ} = \frac{h}{25}$$

 $h = 25 \sin (a + b)^{\circ}$
 $h = 25 \times \frac{408}{650}$
 $h = 15.69 \,\text{m}$



Example 3

- (a) Express $\cos x \cos \frac{\pi}{6} \sin x \sin \frac{\pi}{6}$ in the form $\cos(A + B)$.
- (b) Hence solve the equation $\cos x \cos \frac{\pi}{6} \sin x \sin \frac{\pi}{6} = \frac{1}{2}$ for $0 \le x \le 2\pi$.

Solution

(a)
$$\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6} = \cos\left(x + \frac{\pi}{6}\right)$$

(b)
$$\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6} = \frac{1}{2}$$

$$\cos \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$$

$$x + \frac{\pi}{6} = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}$$

$$x = \frac{\pi}{3} - \frac{\pi}{6} \text{ or } \frac{5\pi}{3} - \frac{\pi}{6}$$

$$x = \frac{\pi}{6} \text{ or } \frac{3\pi}{2}$$

Example 4

Find the exact value of cos15°.

Solution

$$\cos 15^{\circ} = \cos(45 - 30)^{\circ}$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$$

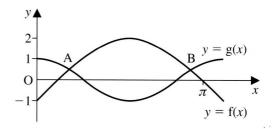
$$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Example 5

The diagram shows the graphs of $f(x) = 3 \sin x - 1$ and $g(x) = \cos 2x$ for $0 \le x \le \pi$.

- (a) Solve algebraically the equation $3 \sin x 1 = \cos 2x$.
- (b) Hence find the coordinates of A and B.
- (c) For what values of x in the interval $0 \le x \le \pi$ is $\cos 2x \le 3 \sin x 1$?



Solution

(a)
$$3 \sin x - 1 = \cos 2x$$

 $3 \sin x - 1 = 1 - 2 \sin^2 x$
 $2 \sin^2 x + 3 \sin x - 2 = 0$
 $(2 \sin x - 1)(\sin x + 2) = 0$
 $\sin x = \frac{1}{2} \text{ or } \sin x = -2$
 $x = \frac{\pi}{6}, \frac{5\pi}{6} \text{ (as } \sin x = -2 \text{ has no solution)}$

(b) When
$$x = \frac{\pi}{6}$$
, $g(x) = \cos \frac{\pi}{3} = \frac{1}{2}$, so A is $(\frac{\pi}{6}, \frac{1}{2})$
When $x = \frac{5\pi}{6}$, $g(x) = \cos \frac{5\pi}{3} = \frac{1}{2}$, so B is $(\frac{5\pi}{6}, \frac{1}{2})$

(c) For the interval $0 \le x \le \pi$, g(x) lies below f(x) when $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$

Example 6

Solve $3 \cos 2x^{\circ} = \cos x^{\circ} - 1$, for $0 \le x \le 360$.

[Higher]

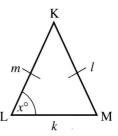
Solution

$$3\cos 2x^{\circ} = \cos x^{\circ} - 1$$
$$3(2\cos^{2}x^{\circ} - 1) = \cos x^{\circ} - 1$$
$$6\cos^{2}x^{\circ} - 3 - \cos x^{\circ} + 1 = 0$$
$$6\cos^{2}x^{\circ} - \cos x^{\circ} - 2 = 0$$
$$(2\cos x^{\circ} + 1)(3\cos x^{\circ} - 2) = 0$$
$$2\cos x^{\circ} + 1 = 0 \text{ or } 3\cos x^{\circ} - 2 = 0$$
$$\cos x^{\circ} = -\frac{1}{2}\operatorname{or } \cos x^{\circ} = \frac{2}{3}$$
$$x = 120, 240 \text{ or } x = 48.2, 311.8$$

Example 7

The diagram shows an isosceles triangle KLM in which KL = KM and angle $KLM = x^{\circ}$.

- (a) Show that $\sin \frac{x^{\circ}}{m} = \frac{\sin 2x^{\circ}}{k}$
- (b) (i) State the value of x when k = m.
 - (ii) Using the fact that k = m, solve the equation in (a) above to justify your stated value of x.



Solution

(a) Since the triangle is isosceles, angle KML = x° , angle LKM = $(180 - 2x)^{\circ}$

Using the sine rule:

$$\frac{\sin L}{l} = \frac{\sin K}{k}$$

$$\frac{\sin x^{\circ}}{m} = \frac{\sin(180 - 2x)^{\circ}}{k}$$

Since
$$\sin(180 - 2x)^{\circ} = \sin 2x^{\circ}$$
 $\frac{\sin x^{\circ}}{m} = \frac{\sin 2x^{\circ}}{k}$

(b) (i) When k = m, triangle KLM is equilateral, so x = 60

(ii)
$$\frac{\sin x^{\circ}}{m} = \frac{\sin 2x^{\circ}}{k}$$
 becomes $\frac{\sin x^{\circ}}{m} = \frac{\sin 2x^{\circ}}{m}$
Hence $\sin x^{\circ} = \sin 2x^{\circ}$
 $\sin x^{\circ} = 2 \sin x^{\circ} \cos x^{\circ}$
 $\sin x^{\circ} - 2 \sin x^{\circ} \cos x^{\circ} = 0$
 $\sin x^{\circ} (1 - 2 \cos x^{\circ}) = 0$
 $\sin x^{\circ} = 0$ or $\cos x^{\circ} = \frac{1}{2}$

x = 0 or x = 60

Clearly x = 60 since the required angle is acute.