

Perth Academy

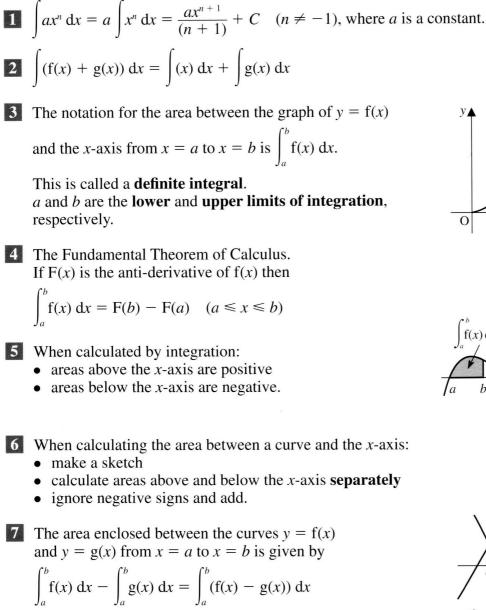
Mathematics Department

Higher

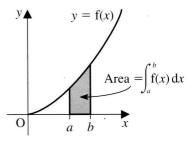
Key Points

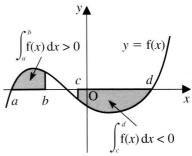
Integration

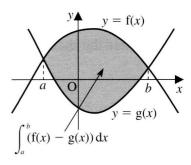
Integration



when $f(x) \ge g(x)$ and $a \le x \le b$.







Example 1

Integrate $\int \sqrt{x} - \frac{2}{x^3} dx$

Solution

$$\int \sqrt{x} - \frac{2}{x^3} dx$$

= $\int x^{\frac{1}{2}} - 2x^{-3} dx$
= $\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{2x^{-2}}{-2} + C$
= $\frac{2x^{\frac{3}{2}}}{3} + \frac{1}{x^2} + C$

Example 2
Integrate
$$\int \frac{4x - x^{\frac{3}{2}}}{2\sqrt{x}} dx$$

$$\int \frac{4x - x^{\frac{3}{2}}}{2\sqrt{x}} dx$$

= $\int \frac{4x}{2x^{\frac{1}{2}}} - \frac{x^{\frac{3}{2}}}{2x^{\frac{1}{2}}} dx$
= $\int 2x^{\frac{1}{2}} - \frac{x}{2} dx$
= $\frac{2x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{2}}{4} + C$
= $\frac{4x^{\frac{3}{2}}}{3} - \frac{x^{2}}{4} + C$

Example 3

Evaluate $\int_{1}^{2} (3x - 1)(x + 5) \, dx$

Solution

$$\int_{1}^{2} (3x - 1)(x + 5) dx$$

= $\int_{1}^{2} 3x^{2} + 14x - 5 dx$
= $[x^{3} + 7x^{2} - 5x]_{1}^{2}$
= $(8 + 28 - 10) - (1 + 7 - 5)$
= 23

Example 4

Calculate the shaded area in the diagram.

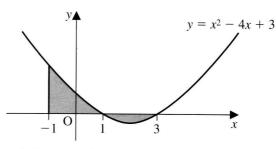
Solution

Area above *x*-axis:

$$\int_{-1}^{1} x^2 - 4x + 3 \, dx$$

= $\left[\frac{x^3}{3} - 2x^2 + 3x\right]_{-1}^{1}$
= $\left(\frac{1}{3} - 2 + 3\right) - \left(\frac{-1}{3} - 2 - 3\right)$
= $6\frac{2}{3}$

Total area = $6\frac{2}{3} + 1\frac{1}{3} = 8$ units²



Area below *x*-axis:

$$\int_{1}^{3} x^{2} - 4x + 3 \, dx$$

= $\left[\frac{x^{3}}{3} - 2x^{2} + 3x\right]_{1}^{3}$
= $(9 - 18 + 9) - \left(\frac{1}{3} - 2 + 3\right)$
= $-1\frac{1}{3}$

Note: Ignore negative sign for area below the *x*-axis.

Example 5

Find the area enclosed by $y = x^2 - x - 2$ and the *x*-axis.

Solution

The graph cuts the x-axis when $x^2 - x - 2 = 0$ (x + 1)(x - 2) = 0so x = -1 or x = 2

Area:
$$\int_{-1}^{2} x^{2} - x - 2 \, dx$$
$$= \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x\right]_{-1}^{2}$$
$$= \left(\frac{8}{3} - 2 - 4\right) - \left(-\frac{1}{3} - \frac{1}{2} + 2\right)$$
$$= -4\frac{1}{2}$$

So the area is $4\frac{1}{2}$ units²

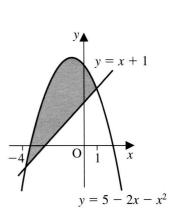
Example 6

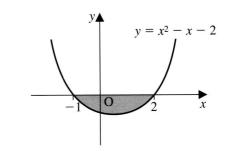
Find the area enclosed by the graphs of y = x + 1 and $y = 5 - 2x - x^2$.

Solution

The graphs intersect where $x + 1 = 5 - 2x - x^2$ x + 3x - 4 = 0 (x + 4) (x - 1) = 0so x = -4 or x = 1

Area:
$$\int_{-4}^{1} (5 - 2x - x^2) - (x + 1) dx$$
$$= \int_{-4}^{1} 4 - 3x - x^2 dx$$
$$= \left[4x - \frac{3x^2}{2} - \frac{x^3}{3} \right]_{-4}^{1}$$
$$= \left(4 - \frac{3}{2} - \frac{1}{3} \right) - \left(-16 - 24 + \frac{64}{3} \right)$$
$$= 20\frac{5}{6} \text{ units}^2$$





Example 7

Determine p given that $\int_{1}^{p} \sqrt{x} \, dx = 42.$

Solution

 $\int_{1}^{p} \sqrt{x} \, dx = 42$ $\int_{1}^{p} x^{\frac{1}{2}} \, dx = 42$ $\left[\frac{2x^{\frac{3}{2}}}{3}\right]_{1}^{p} = 42$ $\left(\frac{2p^{\frac{3}{2}}}{3}\right) - \left(\frac{2}{3}\right) = 42$ $\frac{2p^{\frac{3}{2}}}{3} = \frac{128}{3}$ $p^{\frac{3}{2}} = 64$ p = 16

Example 8

The gradient of a tangent to a curve is given by $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$. If the curve passes through the point (4, 3) find its

equation.

[Higher]

Solution

 $y = \int \frac{1}{2\sqrt{x}} dx = \int \frac{x^{-\frac{1}{2}}}{2} dx$ $= x^{\frac{1}{2}} + C$ $= \sqrt{x} + C$ Substituting (4, 3) in $y = \sqrt{x} + C$ $3 = \sqrt{4} + C$ C = 1

The equation of the curve is $y = \sqrt{x} + 1$

[Higher]