

Perth Academy

Mathematics Department

Higher

Key Points

Quadratic Functions

Quadratic Functions

- The graph of a quadratic function $y = ax^2 + bx + c$ is a **parabola**. If a > 0 the parabola is \bigcirc shaped and the turning point is a minimum. If a < 0 the parabola is \bigcirc shaped and the turning point is a maximum.
- 2 To sketch and anotate a parabola $y = ax^2 + bx + c$ we need to identify where possible:
 - whether the shape is (a > 0) or (a < 0)
 - the coordinates of the y-intercept, (0, c)
 - the zeros of the function by solving $ax^2 + bx + c = 0$
 - the equation of the axis of symmetry
 - the coordinates of the turning point.

When the equation $y = ax^2 + bx + c$ is written in the form $y = a(x + p)^2 + q$, the axis of symmetry is x = -p and the turning point is at (-p, q).

- 4 Quadratic equations may be solved by
 - using the graph
 - factorising
 - completing the square
 - using the quadratic formula.
- A quadratic inequation can be solved using a sketch of the quadratic function.

- 6 If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ where $a \neq 0$
- For the quadratic equation $ax^2 + bx + c = 0$, $b^2 4ac$ is called the **discriminant**:
 - (i) if $b^2 4ac > 0$, the roots are real and unequal
 - (ii) if $b^2 4ac = 0$, the roots are real and equal
 - (iii) if $b^2 4ac < 0$, the roots are non-real.

Example 1

Determine the nature of the roots of each of these equations, using the discriminant.

(a)
$$x^2 - 6x + 8 = 0$$
 (b) $x^2 - 6x + 9 = 0$ (c) $x^2 - 6x + 10 = 0$

b)
$$x^2 - 6x + 9 = 0$$

(c)
$$x^2 - 6x + 10 = 0$$

Solution

(a)
$$x^2 - 6x + 8 = 0$$
 $a = 1, b = -6, c = 8$
 $b^2 - 4ac = (-6)^2 - (4 \times 1 \times 8) = 36 - 32 = 4$

discriminant is positive, so there are two unequal (distinct) real roots.

(b)
$$x^2 - 6x + 9 = 0$$
 $a = 1, b = -6, c = 9$
 $b^2 - 4ac = (-6)^2 - (4 \times 1 \times 9) = 36 - 36 = 0$

discriminant is zero, so roots are real and equal.

(c)
$$x^2 - 6x + 10 = 0$$
 $a = 1, b = -6, c = 10$

discriminant is negative, so roots are non-real.

 $b^2 - 4ac = (-6)^2 - (4 \times 1 \times 10) = 36 - 40 = -4$

Example 2

For what values of p does the equation $x^2 - 2px + (2 - p) = 0$ have non-real roots?

Solution

$$x^{2} - 2px + (2 - p) = 0$$

 $a = 1, b = -2p, c = 2 - p$

For non-real roots $b^2 - 4ac < 0$, so

$$(-2p)^2 - 4(2-p) < 0$$

$$4p^2 - 8 + 4p < 0$$

$$4(p^2+p-2)<0$$

$$4(p-1)(p+2) < 0$$

From the graph of 4(p-1)(p+2) < 0 when -2The equation has non-real roots when -2

Example 3

Find values of q so that $\frac{1}{x^2 - x + 1} = q$ has two equal roots.

Solution

Cross-multiplying gives $q(x^2 - x + 1) = 1$

$$qx^2 - qx + q = 1$$

$$qx^2 - qx + (q - 1) = 0$$

$$a = q, b = -q, c = (q - 1)$$

For equal roots $b^2 - 4ac = 0$, so

$$(-q)^2 - 4q(q-1) = 0$$

$$q^2 - 4q^2 + 4q = 0$$

$$4q - 3q^2 = 0$$

$$q(4-3q)=0$$

The equation has two equal roots when q = 0 or $q = \frac{4}{3}$.

Example 4

Given that k is a real number, show that the roots of the equation $kx^2 + 5x + 5 = k$ are always real numbers.

Solution

$$kx^{2} + 5x + 5 = k$$

$$kx^{2} + 5x + (5 - k) = 0$$

$$a = k, b = 5, c = 5 - k$$

$$b^{2} - 4ac = 25 - 4k(5 - k)$$

$$= 25 - 20k + 4k^{2}$$

$$= (5 - 2k)^{2}$$

Since $(5 - 2k)^2$ is a square it has a minimum value zero, therefore $b^2 - 4ac > 0$ and so the roots of the equation are always real.

Example 5

Find the equation of the parabola that passes through (-1, 0), (5, 0) and (0, -10) in the form $y = ax^2 + bx + c$.

Solution

The parabola cuts the x-axis at x = -1 and x = 5, so k(x + 1)(x - 5) = 0, where k is a constant y = k(x + 1)(x - 5)

When
$$x = 0$$
, $y = -10$
 $k(0 + 1) (0 - 5) = -10$
 $-5k = -10$
 $k = 2$

Hence
$$y = 2(x + 1)(x - 5) = 2x^2 - 8x - 10$$

Example 6

Show that y = 15 - 7x is a tangent to the parabola $y = -x^2 - x + 6$ and find the point of contact.

Solution

The line and parabola meet where $15 - 7x = -x^2 - x + 6$

$$x^2 - 6x + 9 = 0$$

$$b^2 - 4ac = (-6)^2 - (4 \times 1 \times 9) = 0$$

so there is one point of intersection. Hence the line is a tangent to the parabola.

The line and parabola meet where $x^2 - 6x + 9 = 0$

$$(x-3)(x-3) = 0$$

so
$$x = 3$$

The point of contact is (3, -6).

Example 7

The line y = -2x + k is a tangent to the parabola $y = 4x - x^2$. Find the value of k.

Solution

$$y = -2x + k$$
 meets $y = 4x - x^2$ where $-2x + k = 4x - x^2$
 $x^2 - 6x + k = 0$

Tangency implies equal roots therefore $b^2 - 4ac = 0$

$$(-6) - 4k = 0$$

$$k = 9$$

The equation of the tangent is y = 9 - 2x.

